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Foreword

The past five years, as Grossman and Frieder acknowledge in their preface,
have been a period of considerable progress for the field of information re-
trieval (IR). To the general public, this is reflected :n the maturing of commer-
cial Web search engines. To the IR practitioner, research has led to an improved
understanding of the scope and limitations of the Web search problem, new in-
sights into the retrieval process through the development of the formal under-
pinnings and models for IR, and a variety of exciting new applications such as
cross-language retrieval, peer-to-peer search, and music retrieval, which have
expanded the horizons of the research landscape. In addition, there has been
an increasing realization on the part of the database and IR communities that
solving the information problems of the future will involve the integration of
techniques for unstructured and structured data. The revised edition of this
book addresses many of these important new developments, and is currently
the only textbook that does so.

Two particular examples that stood out for me are the descriptions of lan-
guage models for IR and cross-language retrieval. Language models have be-
come an important topic at the major IR conferences and many researchers are
adapting this framework due to its power and simplicity, as well as the avail-
ability of tools for experimentation and application building. Grossman and
Frieder provide an excellent overview of the topic in the retrieval strategies
chapter, together with examples of different smoothing techniques. Cross-
language retrieval, which involves the retrieval of text in different languages
than the query source language, has been driven by government interest in
Europe and the U.S. A number of approaches have been developed that can
exploit available resources such as parallel and comparable corpora, and the ef-
fectiveness of these systems now approaches (or even surpasses in some cases)
monolingual retrieval. The revised version of this book contains a chapter on
cross-language retrieval that clearly describes the major approaches and gives
examples of how the algorithms involved work with real data. The combina-
tion of up-to-date coverage, straightforward treatment, and the frequent use of
examples makes this book an excellent choice for undergraduate or graduate
IR courses.

W. Bruce Creft
August 2004






Preface

When we wrote the first edition of this book in 1998, the Web was relatively
new, and information retrieval was an old field but it lacked popular appeal.
Today the word Google has joined the popular lexicon, and Google indexes
more than four billion Web pages. In 1998, only a few schools taught graduate
courses in information retrieval; today, the subject is commonly offered at the
undergraduate level. Our experience with teaching information retrieval at the
undergraduate level, as well as a detailed analysis of the topics covered and the
effectiveness of the class, are given in [Goharian et al., 2004].

The term Information Retrieval refers to a search that may cover any form of
information: structured data, text, video, image, sound, musical scores, DNA
sequences, etc. The reality is that for many years, database systems existed
to search structured data, and information retrieval meant the search of docu-
ments. The authors come originally from the world of structured search, but
for much of the last ten years, we have worked in the area of document re-
trieval. To us, the world should be data type agnostic. There is no need for a
special delineation between structured and unstructured data. In 1998, we in-
cluded a chapter on data integration, and reviews suggested the only reason it
was there was because it covered some of our recent research. Today, such an
allegation makes no sense, since information mediators have been developed
which operate with both structured and unstructured data. Furthermore, the
eXtensible Markup Language (XML) has become prolific in both the database
and information retrieval domains.

We focus on the ad hoc information retrieval problem. Simply put, ad hoc
information retrieval allows users to search for documents that are relevant to
user-provided queries. It may appear that systems such as Google have solved
this problem, but effectiveness measures for Google have not been publisned.
Typical systems still have an effectiveness (accuracy) of, at best, forty percent
[TREC, 2003]. This leaves ample room for improvement, with the prerequisite
of a firm understanding of existing approaches.

Information retrieval textbooks on the market are relatively unfocused, and
we were uncomfortable using them in our classes. They tend to leave out de-
tails of a variety of key retrieval models. Few books detail inference networks,
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yet an inference network is a core model used by a variety of systems. Ad-
ditionally, many books lack much detail on efficiency, namely, the execution
speed of a query. Efficiency is potentially of limited interest to those who focus
only on effectiveness, but for the practitioner, efficiency concerns can override
all others.

Additionally, for each strategy, we provide a detailed running example.
When presenting strategies, it is easy to gloss over the details, but examples
keep us honest. We find that students benefit from a single example that runs
through the whole book. Furthermore, every section of this book that describes
acore retrieval strategy was reviewed by either the inventor of the strategy (and
we thank them profusely; more thanks are in the acknowledgments!) or some-
one intimately familiar with it. Hence, to our knowledge, this book contains
some of the gory details of some strategies that cannot be found anywhere else
in print.

Our goal is to provide a book that is sharply focused on ad hoc information
retrieval. To do this, we developed a taxonomy of the field based on a model
that a strategy compares a document to a query and a utility can be plugged into
any strategy to improve the performance of the given strategy. We cover all of
the basic strategies, not just a couple of them, and a variety of utilities. We pro-
vide sufficient detail so that a student or practitioner who reads our book can
implement any particular strategy or utility. The book, Managing Gigabytes
[Witten et al., 1999], does an excellent Job of describing a variety of detailed
inverted index compression strategies. We include the most recently devel-
oped and the most efficient of these, but we certainly recommend Managing
Gigabytes as an excellent side reference.

So what is new in this second edition? Much of the core retrieval strategies
remain unchanged. Since 1998, numerous papers were written about the use
of language models for information retrieval. We have added a new section
on language models. Furthermore, cross-lingual information retrieval, that is,
the posting of a query in one language and finding documents in another lan-
guage, was just in its infancy at the time of the first version. We have added an
entire chapter on the topic that incorporates information from over 100 recent
references.

Naturally, we have included some discussion on current topics such as XML,
peer-to-peer information retrieval, duplicate document detection, parallel doc-
ument clustering, fusion of disparate retrieval strategies, and information me-
diators.

Finally, we fixed a number of bugs found by our alert undergraduate and
graduate students. We thank them all for their efforts.

This book is intended primarily as a textbook for an undergraduate or gradu-
ate level course in Information Retrieval. It has been used in a graduate course,
and we incorporated student feedback when we developed a set of overhead
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transparencies that can be used when teaching with our text. The presentation
is available at www.ir.iit.edu.

Additionally, practitioners who build information retrieval systems or appli-
cations that use information retrieval systems will find this book useful when
selecting retrieval strategies and utilities to deploy for production use. We have
heard from several practitioners that the first edition was helpful, and we in-
corporated their comments and suggested additions into this edition.

We emplhiasize that the focus of the book is on algorithms, not on commer-
cial products, but, to our knowledge, the basic strategies used by the majority
of commercial products are described in the book. We believe practitioners
may find that a commercial product is using a given strategy and can then use
this book as a reference to learn what is known about the techniques used by
the product.

Finally, we note that the information retrieval field changes daily. For the
most up to date coverage of the field, the best sources include journals like
the ACM Transactions on Information Systems, the Journal of the American
Society for Information Science and Technology, Information Processing and
Management, and Information Retrieval. Other relevant papers are found in the
various information retrieval conferences such as ACM SIGIR www.sigir.org,
NIST TREC trec.nist.gov, and the ACM CIKM www.cikm.org.
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Chapter 1

INTRODUCTION

Since the near beginnings of civilization, human beings have focused on
written communication. From cave drawings to scroll writings, from printing
presses to electronic libraries, communicating was of primary concern to man’s
existence. Today, with the emergence of digital libraries and electronic infor-
mation exchange there is clear need for improved techniques to organize large
quantities of information. Applied and theoretical research and development
in the areas of information authorship, processing, storage, and retrieval is of
interest to all sectors of the community. In this book, we survey recent research
efforts that focus on the electronic searching and retrieving of documents.

Our focus is strictly on the retrieval of information in response to user
queries. That is, we discuss algorithms and approaches for ad hoc informa-
tion retrieval, or simply, information retrieval. Figure 1.1 illustrates the basic
process of ad hoc information retrieval. A static, or relatively static, document
collection is indexed prior to any user query. A query is issued and a set of doc-
uments that are deemed relevant to the query are ranked based on their com-
puted similarity to the query and presented to the user. Numerous techniques
exist to identify how these documents are ranked, and that is a key focus of this
book (effectiveness). Other techniques also exist to rank documents quickly,
and these are also discussed (efficiency).

Information Retrieval (IR) is devoted to finding relevant documents, not
finding simple matches to patterns. Yet, often when information retrieval sys-
tems are evaluated, they are found to miss numerous relevant documents [Blair
and Maron, 1985]. Moreover, users have become complacent in their expecta-
tion of accuracy of information retrieval systems [Gordon, 1997].

A related problem is that of document routing or filtering. Here, the queries
are static and the document collection constantly changes. An environment
where corporate e-mail is routed based on predefined queries to different parts
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Figure 1.1. Document Retrieval

Ad hoc Query Ranked Resuilts

Static Document Collection

of the organization (i.e., e-mail about sales is routed to the sales department,
marketing e-mail goes to marketing, etc.) is an example of an application of
document routing. Figure 1.2 illustrates document routing. Document routing
algorithms and approaches also widely appear in the literature, but are not
addressed in this book.

In Figure 1.3, we illustrate the critical document categories that correspond
to any issued query. Namely, in the collection there are documents which are
retrieved, and there are those documents that are relevant. In a perfect system,
these two sets would be equivalent; we would only retrieve relevant documents.
In reality, systems retrieve many non-relevant documents. To measure effec-
tiveness, two ratios are used: precision and recall. Precision is the ratio of the
number of relevant documents retrieved to the total number retrieved. Preci-
sion provides an indication of the quality of the answer set. However, this does
not consider the total number of relevant documents. A system might have
good precision by retrieving ten documents and finding that nine are relevant
(a 0.9 precision), but the total number of relevant documents also matters. If
there were only nine relevant documents, the system would be a huge success
— however if millions of documents were relevant and desired, this would not
be a good result set.

Recall considers the total number of relevant documents; it is the ratio of
the number of relevant documents retrieved to the total number of documents
in the collection that are believed to be relevant. Computing the total number
of relevant documents is non-trivial. The only sure means of doing this is
to read the entire document collection. Since this is clearly not feasible, an
approximation of the number is obtained (see Chapter 9). A good survey of
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Figure 1.2.  Document Routing
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effectiveness measures, as well as a brief overview of information retrieval, is
found in [Kantor, 1994].

Precision can be computed at various points of recall. Consider an example
query g. For this query, we have estimated that there are two relevant docu-
ments. Now assume that when the user submits query ¢ that ten documents
are retrieved, including the two relevant documents. In our example, docu-
ments two and five are relevant. The sloped line in Figure 1.4 shows that after
retrieving two documents, we have found one relevant document, and hence
have achieved fifty percent recall. At this point, precision is fifty percent as we
have retrieved two documents and one of them is relevant.

To reach one hundred percent recall, we must continue to retrieve docu-
ments until both relevant documents are retrieved. For our example, it is nec-
essary to retrieve five documents to find both relevant documents. At this point,
precision is forty percent because two out of five retrieved documents are rele-
vant. Hence, for any desired level of recall, it is possible to compute precision.
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Figure 1.3. Result Set: Relevant Retrieved, Relevant, and Retrieved

All documents
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Graphing precision at various points of recall is referred to as a precision/recall
curve.

A typical precision/recall curve is shown in Figure 1.5. Typically, as higher
recall is desired, more documents must be retrieved to obtain the desired level
of recall. In a perfect system, only relevant documents are retrieved. This
means that at any level of recall, precision would be 1.0. The optimal preci-
sion/recall line is shown in Figure 1.5.

Average precision refers to an average of precision at various points of re-
call. Many systems today, when run on a standard document collection, report
an average precision of between 0.2 and 0.3. Certainly, there is some element
of fuzziness here because relevance is not a clearly defined concept, but it is
clear that there is significant room for improvement in the area of effectiveness.

Finding relevant documents is not enough. The goal is to identify relevant
documents within an acceptable response time. This book describes the current
strategies to find relevant documents quickly. The quest to find efficient and
effective information retrieval algorithms continues.

We explain each algorithm in detail, and for each topic, include examples
for the most crucial algorithms. We then switch gears into survey mode and
provide references to related and follow-on work. We explain the key aspects
of the algorithms and then provide references for those interested in further
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Figure 1.4. Precision and Two Points of Recall
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Figure 1.5. Typical and Optimal Precision/Recall Graph
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details. A collection of key information retrieval research papers is found in
[Sparck Jones and Willett, 1997].

Recent algorithms designed to search large bodies of information are dis-
cussed throughout this book. Many research publications describe these al-
gorithms in detail, but they are spread across numerous journals and written
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in a variety of different styles. Also, they have differing expectations of their
reader’s background. We provide a relatively brief, but sufficiently detailed
overview of the field.

A sophisticated mathematical background is not required. Whenever de-
tailed mathematical constructs are used, we provide a quick refresher of the
key points needed to understand the algorithms and detailed examples.

We believe this book is valuable to a variety of readers. Readers familiar
with the core of computer science and interested in learning more about infor-
mation retrieval algorithms should benefit from this text. We provide explana-
tions of the fundamental problems that exist and how people have addressed
them in the past.

This book also has value for anyone who currently uses and supports a Re-
lational Database Management System (RDBMS). Chapter 6 gives detailed al-
gorithms that treat text retrieval as an application of a RDBMS. This makes it
possible to integrate both structured data and text. We also include a section de-
scribing relational database approaches to process semi-structured documents
such as those tagged with XML.

To guide the reader through the key issues in ad hoc information retrieval,
we partitioned this book into separate but inter-linked processing avenues. In
the first section, covered in Chapters 2 and 3, we overview retrieval process-
ing strategies and utilities. All of these strategies and utilities focus on one
and only one critical issue, namely, the improvement of retrieval accuracy. In
Chapter 2, we describe nine models that were either developed for or adapted
to information retrieval specifically for the purpose of enhancing the evalua-
tion or ranking of documents retrieved in response to user queries. Chapter 3
describes utilities that could be applied to enhance any strategy described in
Chapter 2.

In Chapter 3, we focus on techniques that are applicable to either all or most
of the models. Several of those utilities described are language dependent, e.g.,
parsing and thesauri, others focus specifically on being language independent,
namely, N-gram processing. We note in Chapter 3, that some of the described
utilities were proposed as individual processing strategies. In reality, however,
it is the combination of these techniques that yields the best improvements.
An approach to precisely determine the optimal mix of techniques, the order
to execute them, and the underlying models to operate them so as to yield the
optimal processing strategy is still unknown.

After describing models and utilities that address accuracy demands, we
turn our attention towards processing efficiency. In Chapter 4, we describe
various document access schemes. That is, we describe both the constructs
and usage of inverted indices as well as other representation schemes such as
signature files. Each of these access schemes has advantages and disadvan-
tages. The tradeoffs lie in terms of storage overhead and maintainability ver-
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sus search and retrieval processing times. After describing the various access
methods, we overview several compression schemes.

Chapters 2 and 3 cover the basics of traditional information retrieval models,
utilities, and processing strategies. Chapter 4 provides a brief overview of
cross-language information retrieval. Chapter 5 describes efficiency issues in
Information Retrieval. In Chapters 6, 7, and 8, we focus on special topics
in information retrieval. The three topics addressed, namely data integration,
parallel, and distributed information retrieval systems, were selected based on
where the commercial sector is focusing.

Traditionally, there was a clear separation between structured data, typi-
cally stored and accessed via relational database management systems, and
semi-structured data such as text, typically stored and accessed via informa-
tion retrieval systems. Each processing system supported its own data storage
files and access methods. Today, the distinction between structured and semi-
structured data is quickly vanishing. In fact, we no longer are concerned with
just structured and semi-structured data, but also text and often include un-
structured data, such as images, in the same storage repository.

To address the integration of structured and unstructured data, commercial
vendors such as Oracle, IBM, and Microsoft have integrated information re-
trieval functionality with their traditional relational database engines. Further-
more, text retrieval vendors such as Convera and Verity have added relational
processing components. In all of these cases, however, additional functional-
ity came at the expense of requiring additional, separate, processing units. In
Chapter 6, we discuss the issues related to adding processing units and sug-
gest an alternative method that involves implementing information retrieval
processing capability as an application of relational databases. Using such an
approach, the traditional benefits of relational database processing (i.e., porta-
bility, concurrency, recovery, etc.) are made available without requiring addi-
tional software development. Since all traditional relational database vendors
provide parallel implementations of their database software, implementing an
information retrieval system as a relational database application further pro-
vides for a parallel instantiation of an information retrieval system.

Having recognized the need for a parallel information retrieval capability,
we also describe recent developments in this area. In Chapter 7, we ini-
tially describe the earlier parallel processing efforts in information retrieval.
These approaches predominantly focus on the use of Single Instruction Multi-
ple Data (SIMD) multiprocessors to efficiently scan the text. However, as the
understanding of parallel processing techniques in information retrieval grew,
inverted index-based approaches were developed to reduce the unnecessarily
high /O demands commonly associated with text scanning schemes. We dis-
cuss several of these approaches and conclude Chapter 7 with recent work in
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parallel information retrieval focusing on the parallelization of document clus-
tering algorithms.

In the information processing world of today, no treatment of the field is
complete without addressing the most frequently used retrieval paradigm, the
World Wide Web. Thus, in Chapter 8, we describe the encompassing topic
of the Web, namely, distributed information retrieval systems. We overview
some of the early theoretical foundations and culminate with a discussion of
peer-to-peer information retrieval.

The problem of searching document collections to find relevant documents
has been addressed for more than forty years. However, until the advent of the
Text REtrieval Conference (TREC) in 1990 (which is hosted by the National
Institute of Standards and Technology), there was no standard test bed to judge
information retrieval algorithms. Without the existence of a standard test data
collection and a standard set of queries, there was no effective mechanism by
which to objectively compare the algorithms. Many of these algorithms were
run against only a few megabytes of text. It was hoped that the performance
of these would scale to larger document collections. A seminal paper showed
that some approaches that perform well on small document collections did not
perform as well on large collections [Blair and Maron, 1985].

We include a brief description of TREC in Chapter 9 — our final chapter.
Given all of the models, utilities, and performance enhancements proposed
over the years, clearly measures and procedures to evaluate their effectiveness
in terms of accuracy and processing times are needed. Indeed, that was part
of the motivation behind the creation of the benchmark data and query sets
and evaluation forum called TREC. Today, TREC serves as the de facto forum
for comparison across systems and approaches. Unfortunately, only accuracy
evaluations are currently supported. Hopefully, in the future, processing effi-
ciency will also be evaluated.

We conclude this book with a discussion of the current limitations of infor-
mation retrieval systems. We review our successes and project future needs.
It is our hope that after reading this text, you the reader, will be interested in
furthering the field of information retrieval. In our future editions, we hope to
incorporate your contributions.



Chapter 2

RETRIEVAL STRATEGIES

Retrieval strategies assign a measure of similarity between a query and a
document. These strategies are based on the common notion that the more of-
ten terms are found in both the document and the query, the more “relevant”
the document is deemed to be to the query. Some of these strategies employ
counter measures to alleviate problems that occur due to the ambiguities inher-
ent in language—the reality that the same concept can often be described with
many different terms (e.g., new york and the big apple can refer to the same
concept). Additionally, the same term can have numerous semantic definitions
(terms like bark and duck have very different meanings in their noun and verb
forms).

A retrieval strategy is an algorithm that takes a query Q and a set of docu-
ments Dy, Do, ..., D, and identifies the Similarity Coefficient SC(Q,D;) for
each of the documents 1 < i < n. (Note: SC is short for Similarity Coefficient,
sometimes it is. written RSV for Retrieval Status Value).

The retrieval strategies identified are:

= Vector Space Model—Both the query and each document are represented
- as vectors in the term space. A measure of the similarity between the two
vectors is computed.

s Probabilistic Retrieval—A probability based on the likelihood that a term
will appear in a relevant document is computed for each term in the collec-
tion. For terms that match between a query and a document, the similarity
measure is computed as the combination of the probabilities of each of the
matching terms.

= Language Models—A language model is built for each document, and the
likelihood that the document will generate the query is computed.
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= Inference Networks—A Bayesian network is used to infer the relevance
of a document to a query. This is based on the “evidence” in a document
that allows an inference to be made about the relevance of the document.
The strength of this inference is used as the similarity coefficient.

= Boolean Indexing—A score is assigned such that an initial Boolean query
results in a ranking. This is done by associating a weight with each query
term so that this weight is used to compute the similarity coefficient.

= Latent Semantic Indexing—The occurrence of terms in documents is rep-
resented with a term-document matrix. The matrix is reduced via Singular
Value Decomposition (SVD) to filter out the noise found in a document so
that two documents which have the same semantics are located close to one
another in a multi-dimensional space.

» Neural Networks—A sequence of “neurons,” or nodes in a network, that
fire when activated by a query triggering links to documents. The strength
of each link in the network is transmitted to the document and collected
to form a similarity coefficient between the query and the document. Net-
works are “trained” by adjusting the weights on links in response to prede-
termined relevant and irrelevant documents.

» Genetic Algorithms—An optimal query to find relevant documents can
be generated by evolution. An initial query is used with either random
or estimated term weights. New queries are generated by modifying these
weights. A new query survives by being close to known relevant documents
and queries with less “fitness” are removed from subsequent generations.

= Fuzzy Set Retrieval —A document is mapped to a fuzzy set (a set that
contains not only the elements but a number associated with each element
that indicates the strength of membership). Boolean queries are mapped
into fuzzy set intersection, union, and complement operations that result in
a strength of membership associated with each document that is relevant to
the query. This strength is used as a similarity coefficient.

For a given retrieval strategy, many different utilities are employed to improve
the results of the retrieval strategy. These are described in Chapter 3. Note
that some strategies and utilities are based on very different mathematical con-
structs. For example, a probabilistic retrieval strategy should theoretically not
be used in conjunction with a thesaurus based on the vector space model. How-
ever, it might be the case that such a combination could improve effectiveness.
We merely note that care should be taken when mixing and matching strategies
and utilities that are based on very different mathematical models.
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Attempting to refine the query, most of these utilities add or remove terms
from the initial query. Others simply refine the focus of the query (using sub-
documents or passages instead of whole documents). The key is that each of
these utilities (although rarely presented as such) are plug-and-play utilities
that should work with an arbitrary retrieval strategy.

Before delving into the details of each strategy, we wish to somewhat cau-
tion the reader. In our attempt to present the algorithms in their original form,
we intentionally left inconsistencies present. For example, some inventors used
In(z) while other use log(z) to achieve a slow growing function. Clearly, we
are aware that these functions are strictly a constant multiple of each other, but
we felt that presenting the original description was still advantageous although
it does introduce some minor confusion. Towards clarity, we tried to use com-
mon notation across strategies and provided a running example that uses the
same query and documents regardless of each strategy.

2.1  Vector Space Model

The vector space model computes a measure of similarity by defining a
vector that represents each document, and a vector that represents the query
[Salton et al., 1975]. The model is based on the idea that, in some rough
sense, the meaning of a document is conveyed by the words used. If one can
represent the words in the document by a vector, it is possible to compare
documents with queries to determine how similar their content is. If a query
is considered to be like a document, a similarity coefficient (SC) that measures
the similarity between a document and a query can be computed. Documents
whose content, as measured by the terms in the document, correspond most
closely to the content of the query are judged to be the most relevant. Figure
2.1 illustrates the basic notion of the vector space model in which vectors that
represent a query and three documents are illustrated.

This model involves constructing a vector that represents the terms in the
document and another vector that represents the terms in the query. Next, a
method must be chosen to measure the closeness of any document vector to
the query vector. One could look at the magnitude of the difference vector
between two vectors, but this would tend to make any large document appear
to be not relevant to most queries, which typically are short. The traditional
method of determining closeness of two vectors is to use the size of the angle
between them. This angle is computed by using the inner product (or dot
product); however, it is not necessary to use the actual angle. Any monotonic
function of the angle suffices. Often the expression “similarity coefficient” is
used instead of an angle. Computing this number is done in a variety of ways,
but the inner product generally plays a prominent role. Underlying this whole
discussion is the idea that a document and a query are similar to the extent that
their associated vectors point in the same general direction.
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There is one component in these vectors for every distinct term or concept
that occurs in the document collection. Consider a document collection with
only two distinct terms, -« and 5. All vectors contain onaly two components,
the first component represents -occurrences of o, and the second represents
occurrences of 3. The simplest means of constructing a vector is to place a one
in the .corresponding vector component if the term appears, and a zero if the
term does not appear. Consider a document, D1, that contains two occurrences
of term a and zero occurrences of term 3. The vector < 1,0 > represents
this document using a binary representation. This binary representation can be
used to produce a similarity coefficient, but it does not take into account the
frequency of a term within a document. By extending the represemtation to
include a count of the number of occurrences of the terms in each component,
the frequency of the terms can be considered. In this exampile, the vector would
now appear as < 2,0 >.

A simple example is given in Figure 2.2. A component of each vector is
required for each distinct term in the collection. Using the toy example of
a language with :a two word vocabulary (only A and / are valid terms), all
queries and documents can be represented in two dimensional space. A query
and three documents are given along with their corresponding vectors and a
graph of these vectors. The similarity coefficient ‘between the query and the
documents can be computed as the distance from the query to the two vectors.
In this example, it can be seen that document one is represented by the same
vector as the query so it will have the highest rank in the result set.

Instead of simply specifying a list of terms in the query, a user is often
given the opportunity to indicate that one term is more important than another.
This was done initially with manually assigned term weights selected by users.
Another approach uses automatically assigned weights — typically based on
the frequency of a term as it occurs across the entire document collection.
The idea was that a term that occurs infrequently should be given a higher
weight than a term that occurs frequently. Similarity coefficients that em-
ployed automatically assigned weights were compared to manually assigned
weights [Salton, 1969, Salton, 1970b]). It was shown that automatically as-
signed weights perform at least as well as manually assigned weights [Salton,
1969, Salton, 1970b]. Unfortunately, these results did not include the relative
weight of the term across the entire collection.

The value of a collection weight was studied in the 1970’s. The conclu-
sion was that relevance rankings improved if collection-wide weights were in-
cluded. Although relatively small document collections were used to conduct
the experiments, the authors still concluded that, “in so far as anything can be
called a solid result in information retrieval research, this is one” [Robertson
and Sparck Jones, 1976].
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Figure 2.1.  Vector Space Model
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This more formal definition, and slightly larger example, illustrates the use
of weights based on the collection frequency. Weight is computed using the
Inverse Document Frequency (IDF) corresponding to a given term.

To construct a vector that corresponds to each document, consider the fol-
lowing definitions:

t = number of distinct terms in the document collection

t fi= number of occurrences of term t]-' in document D;.
This is referred to as the term frequency.

df ;= number of documents which contain tj.
This is the document frequency.

idf = log( %) where d is the total number of documents.
This is the inverse document frequency.

The vector for each document has n components and contains an entry for
each distinct term in the entire document collection. The components in the
vector are filled with weights computed for each term in the document collec-
tion. The terms in each document are automatically assigned weights based
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Figure 2.2. Vector Space Model with a Two Term Vocabulary

Documents:
D, D, D, Q

Document vectors: D,=<1,1>

D,=<1,0>
D,=<0,1>
Q=<1,1>

on how frequently they occur in the entire document collection and how often
a term appears in a particular document. The weight of a term in a document
increases the more often the term appears in one document and decreases the
more often it appears in all other documents.

A weight computed for a term in a document vector is non-zero only if the
term appears in the document. For a large document collection consisting of
numerous small documents, the document vectors are likely to contain mostly
zeros. For example, a document collection with 10,000 distinct terms results
in a 10,000-dimensional vector for each document. A given document that
has only 100 distinct terms will have a document vector that contains 9,900
zero-valued components.

The weighting factor for a term in a document is defined as a combination
of term frequency, and inverse document frequency. That is, to compute the
value of the jth entry in the vector corresponding to document ¢, the following
equation is used:

d,‘j = tfij X ‘ldfj
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Consider a document collection that contains a document, D;, with ten oc-
currences of the term green and a document, D, with only five occurrences of
the term green. If green is the only term found in the query, then document D,
is ranked higher than D>.

When a document retrieval system is used to query a collection of docu-
ments with ¢ distinct collection-wide terms, the system computes a vector D
(di1, dio, . . ., dit) of size t for each document. The vectors are filled with term
weights as described above. Similarly, a vector Q (wgq1, wqe, - . ., wgqt) is con-
structed for the terms found in the query.

A simple similarity coefficient (SC) between a query Q and a document D;
is defined by the dot product of two vectors. Since a query vector is similar in
length to a document vector, this same measure is often used to compute the
similarity betwe=n two documents. We discuss this application of an SC as it
applies to document clustering in Section 3.2.

t
SC(Q,Di) =Y wg; x dij
j=1

2.1.1  Example of Similarity Coefficient

Consider a case insensitive query and document collection with a query Q
and a document collection consisting of the following three documents:

Q:  “gold silver truck”

D, : “Shipment of gold damaged in a fire”

Dy: “Delivery of silver arrived in a silver truck”
Dj3: “Shipment of gold arrived in a truck”

In this collection, there are three documents, so d = 3. If a term appears in
only one of the three documents, its idf is log %_ = log% = 0.477. Similarly,

if a term appears in two of the three documents its idf is log% = (0.176, and a
term which appears in all three documents has an idf of log % =0.

The idf for the terms in the three documents is given below:

idf, =0 idfin =0

1dfarrived =0.176 : idfof =0
Z.dfda.maged =0.477 idfsitver = 0.477
7:dfdeliverg,; =0477 . idfshipment =0.176

idf fire = 0.477 tdftruck =0.176



16 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

tdfgord = 0.176

Document vectors can now be constructed. Since eleven terms appear in the
document collection, an eleven-dimensional document vector is constructed.
The alphabetical ordering given above is used to construct the document vector
so that ¢; corresponds to term number one which is a and ¢5 is arrived, etc.
The weight for term ¢ in vector j is computed as the idf; x t f;;. The document
vectors are shown in Table 2.1.

Table 2.1. Document Vectors

docid | a | arrived | damaged | delivery | fire | gold | in | of | shipment | silver | truck
Dy |0 0 AT7 0]1.4771.176 1 0] O 176 0 0
Dy |0 176 0 477 0 0]0] 0 0] 9541 .176
D3z |0 176 0 0 0].176 ] 0] O 176 0 .176
Qo0 0 0 0 0].176 | 0| O 0 477 176

SC(Q, Dy) = (0)(0) + (0)(0) + (0)(0.477) + (0)(0)
+(0)(0.477) + (0.176)(0.176) + (0)(0) + (0)(0)
+(0)(0.176) + (0.477)(0) + (0.176)(0)
= (0.176)% ~ 0.031

Similarly,
SC(Q, Dy) = (0.954)(0.477) + (0.176)% ~ 0.486
SC(Q, D3) = (0.176)% + (0.176)? =~ 0.062

Hence, the ranking would be Dy, D3, D;.

Implementations of the vector space model and other retrieval strategies typ-
ically use an inverted index to avoid a lengthy sequential scan through every
document to find the terms in the query. Instead, an inverted index is generated
prior to the user issuing any queries. Figure 2.3 illustrates the structure of the
inverted index. An entry for each of the n terms is stored in a structure called
the index. For each term, a pointer references a logical linked list called the
posting list. The posting list contains an entry for each unique document that
contains the term. In the figure below, the posting list contains both a docu-
ment identifier and the term frequency. (In practice, structures more efficient
than linked lists are often used, but conceptually they serve the same purpose).
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The posting list in the figure indicates that term ¢; appears once in document
one and twice in document ten. An entry for an arbitrary term ¢; indicates that
it occurs tf times in document j. Details of inverted index construction and
use are provided in Chapter S, but it is useful to know that inverted indexes are
commonly used to improve run-time performance of various retrieval strate-
gies.

Figure 2.3. Inverted Index

term, +—>{ (d,,1) »{(d,..2)]
term, —>» -

term, 4+—>» -

tefmi '——)' (dhtfi.i)l

ter-mn > -

Early work described the vector space model in the late 1960’s [Salton and
Lesk, 1968]. This model became popular in the mid-1970’s [Salton et al.,
1975] and is still an extremely popular means of computing a measure of sim-
ilarity between a query and a document [TREC, 2003]. The measure is im-
portant as it is used by a retrieval system to identify which documents are
displayed to the user. Typically, the user requests the top n documents, and
these are displayed ranked according to the similarity coefficient.

Subsequently, work on term weighting was done to improve on the basic
combination of tf-idf weights [Salton and Buckley, 1988]. Many variations
were studied, and the following weight for term j in document 7 was identified
as a good performer:

(logtfi; + 1.0) * idf;
j=1l(log tfij + 1.0) * idf;)?

Wi; =
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The motivation for this weight is that a single matching term with a high
term frequency can skew the effect of remaining matches between a query and
a given document. To avoid this, the log(tf) + 1 is used reduce the range of
term frequencies. A variation on the basic theme is to use weight terms in the
query differently than terms in the document.

One term weighting scheme, referred to as Inc.ltc, was effective. It uses a
document weight of (1+log(tf))(idf) and query weight of (1+log(tf)). The
label Inc.ltc is of the form: gqq.ddd where qqq refers to query weights and ddd
refers to document weights. The three letters: gqq or ddd are of the form xyz.

The first letter, x, is either n, I, or a. n indicates the “natural” term frequency
or just ¢ f is used. [ indicates that the logarithm is used to scale down the weight
so 1 + log(tf) is used. « indicates that an augmented weight was used where
the weight is 0.5 + 0.5 x —t—tL

The second letter, y, indicates whether or not the idf was used. A value of
n indicates that no idf was used while a value of ¢ indicates that the idf was
used.

The third letter, z, indicates whether or not document length normalization
was used. By normalizing for document length, we are trying to reduce the
impact document length might have on retrieval (see Equation 2.1). A value
of n indicates no normalization was used, a value of ¢ indicates the standard
cosine normalization was used, and a value of u indicates pivoted length nor-
malization was used in [Singhal, 1997].

2.1.2  Similarity Measures

Several different means of comparing a query vector with a document vector
have been implemented. These are well documented and are presented here
simply as a quick review. The most common of these is the cosine measure
where the cosine of the angle between the query and document vector is given:

t
) j=1 Wqj dyj

\/Z§=1(du)2 E§:1(wq9‘)2

SC(Q’ Dl) =

Since the ,/Zgzl(wqj)Q appears in the computation for every document,
the cosine coefficient should give the same relevance results as dividing the
inner product by the magnitude of the document vector. Note that the cosine
measure “normalizes” the result by considering the length of the document.
With the inner product measure, a longer document can result in a higher score
simply because it is longer, and thus, has a higher chance of containing terms
that match the query—not necessarily because it is relevant.
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The Dice coefficient is defined as:

2351 wyyds;
3‘:1(‘11']')2 Z;:l(w(ﬂ)z

The Jaccard coefficient is defined as:

SC(Q, D;) =

_ 23:1 Wgjd; ,
22:1(‘11']')2 + Z§:1(wqj)2 - Zj’:l wg;di;

The cosine measure levels the playing field by dividing the computation by
the length of the document vector. The assumption used in the cosine measure
is that document length has no impact on relevance. Without a normalization
factor, longer documents are more likely to be found relevant simply because
they have more terms which increases the likelihood of a match. Dividing by
the document vector removes the size of the document from consideration.

It turns out that (at least for the TREC data), this basic assumption is not
correct. Taking all of the relevant documents found for a set of fifty TREC
queries, Singhal found that more documents judged to be relevant actually
were found in longer documents [Singhal, 1997]. The reason for this might be
that a longer document simply has more opportunity to have some components
that are indeed relevant to a given query.

To identify a means of adjusting the normalization factor, Singhal compared
the likelihood of relevance with the likelihood of retrieval in a collection where
the documents relevant to a set of queries was known. Ideally, if the probability
of retrieval and the probability of relevance are both plotted against the length
of the document, the two curves should be roughly the same. Since this is not
the case (the two curves actually cross), there must be a document length in
which the probability of relevance equals the probability of retrieval. Before
this point (referred to as the pivor), a document is more likely to be retrieved
than relevant. After this point, the reverse is true. Once the pivot is found,
a “correction factor” can be used to adjust the normalization. The “correction
factor” is computed from a linear equation whose value at pivot is equal to pivor
and whose slope is selected to increase the normalization for shorter documents
so that their probability of selection is equal to their probability of relevance.
Thus, the similarity coefficient is:

t
2j=1Wg;diy

(L0 = s)p + (5)1/3°5- (dij)?

SC(Q~ Dl) =

This scheme has two variables: s and p for the slope and pivot, respectively.
However, it is possible to express the slope as a function of pivot. Singhal
selects as pivot the average normalization factor taken over the entire collection



20 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

prior to any correction and adjusts the slope accordingly. At the same time the
normalization factor is divided by (1.0 — s)p. The resulting equation for the
similarity coefficient:

L wgadi
SC(Q, Dy) = L=t Yo @.1)

(1.0 — s) + (s) EJ=1(dij)2

avgn

where avgn is the average document normalization factor before any correc-
tion is made.

The pivoted scheme works fairly well for short and moderately long doc-
uments, but extremely long documents tend to be more favored than those
without any normalization. To remedy this, the number of unique terms in a
document, |d;| is proposed as the normalization function prior to any adjust-
ment.

A final adjustment is made to account for extremely high term frequencies
that occur in very large documents. First, a weight of (1 + logtf) is used
to scale the frequency. To account for longer documents, an individual term
weight is divided by the weight given to the average term frequency.

The new weight, d;;, is computed as—

4 — 1+ logtf
Y71 + log(atf)

Using this new weight, and dividing it by the correction factor gives the fol-
lowing equation:
22:1 wy;dij

(10 = s)p+ (s)(Idi]))

SC(Q, Dy) = 22)

We then compute the average number of unique terms in a document for a
given collection and use this as the pivot, p. Once this is done, the collection
can be trained for a good slope. Equation 2.2 is referred to as pivoted unique
normalization and it was shown to provide improved effectiveness over pivoted
cosine normalization given in Equation 2.1. The modified normalization factor
makes it more likely to retrieve longer documents and consistently shows about
a ten percent improvement for TREC queries.

It should also be noted that the vector space model assumes terms are in-
dependent. One approach to alleviating the question of term independence in
the vector space model is to change the basis. Although changing the basis
does not totally eliminate the problem, it can reduce it. The idea is to pick a
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basis vector for each combination of terms that exist in a document (regard-
less of the number of occurrences of the term). The new basis vectors can be
made mutually orthogonal and can be scaled to be unit vectors. The documents
and the query can be expressed in terms of the new basis vectors. Using this
procedure in conjunction with other (possibly probabilistic) methods avoids in-
dependence assumptions, but in practice, it has not been shown to significantly
improve effectiveness.

2.2  Probabilistic Retrieval Strategies

The probabilistic model computes the similarity coefficient (SC) between
a query and a document as the probability that the document will be relevant
to the query. This reduces the relevance ranking problem to an application of
probability theory. A survey on probabilistic methods is given in [Fuhr, 1992].

Probability theory can be used to compute a measure of relevance between
a query and a document. Two fundamentally different approaches were pro-
posed. The first relies on usage patterns to predict relevance [Maron and
Kuhns, 1960], the second uses each term in the query as clues as to whether or
not a document is relevant [Robertson and Sparck Jones, 1976].

The original work on the use of probability theory to retrieve documents
can be traced to Maron and Kuhns. Their work developed an area of research
where the probability that a document will be relevant given a particular term
is estimated.

All of the work on probabilistic retrieval stems from the concept of estimat-
ing a term’s weight based on how often the term appears or does not appear
in relevant documents and non-relevant documents, respectively. Section 2.2.1
describes the simple term weight model, a non-binary independence model is
discussed in Section 2.2.2, and Sections 2.2.3 and 2.2.4 describe the Poisson
and component-based models which have both performed well on the TREC
collection. Finally, Section 2.2.5 focuses on two large issues with the model—
parameter estimation and independence assumptions.

2.2.1 Simple Term Weights

The use of term weights is based on the Probability Ranking Principle (PRP),
which assumes that optimal effectiveness occurs when documents are ranked
based on an estimate of the probability of their relevance to a query [Robertson,
1977].

The key is to assign probabilities to components of the query and then use
each of these as evidence in computing the final probability that a document is
relevant to the query.

The terms in the query are assigned weights which correspond to the prob-
ability that a particular term, in a match with a given query, will retrieve a
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relevant document. The weights for each term in the query are combined to
obtain a final measure of relevance.

Most of the papers in this area incorporate probability theory and describe
the validity of independence assumptions, so a brief review of probability the-
ory is in order.

Suppose we are trying to predict whether or not a softball team called the
Salamanders will win one of its games. We might observe, based on past ex-
perience, that they usually win on sunny days when their best shortstop plays.
This means that two pieces of evidence, outdoor-conditions and presence of
good-shortstop, might be used. For any given game, there is a seventy five per-
cent chance that the team will win if the weather is sunny and a sixty percent
chance that the team will win if the shortstop plays. Therefore, we write:

P(win | sunny) = 0.75
P(win | good-shortstop) = 0.6

The conditional probability that the team will win given both situations is writ-
ten as p(win | sunny, good-shortstop). This is read “the probability that the
team will win given that there is a sunny day and the good-shortstop plays.”
We have two pieces of evidence indicating that the Salamanders will win. In-
tuition says that together the two pieces should be stronger than either alone.
This method of combining them is to “look at the odds.” A seventy-five per-
cent chance of winning is a twenty-five percent chance of losing, and a sixty
percent chance of winning is a forty percent chance of losing. Let us assume
the independence of the pieces of evidence.

P(win | sunny, good-shortstop) = o
P(win | sunny) = 3
P(win | good-shortstop) = v

By Bayes’ Theorem:

P(win, sunny, good-shortstop)  P(sunny, good—shortstop|win) P(win)
o= =

P(sunny, good-shortstop) P(sunny, good—shortstop)

Therefore:

«  P(sunny, good—shortstop|win)P(win)

l—a P(sunny, good—shortstop|lose) P(lose)
Solving for the first term (because of the independence assumptions):

P{sunny. good—shortstop|win; _ P(sunny|win)P(good—shortstop|win)

P(sunny, good—shortstop|lose) P(sunnyllose) P(good—shortstop|lose)
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Similarly,

B P(sunny|win)P(win)
1 -8 P(sunnyl|lose)P(lose)

5y P(good—shortstop|win)P(win)

1—~  P(good—shortstop|lose)P(lose)

Making all of the appropriate substitutions, we obtain:
a ( 8 ) <P(lose)> ( v ) (P(losé)) (P(win))
-« \1-38)\P(win)/ \1 -~/ \ P(win)) \ P(lose)

Simplifying: . 3 ., P(lose)
- (755) (25) (o)

Assume the Salamanders are a 0.500 ball club (that is they win as often as
they lose) and assume numeric values for 3 and -y of 0.6 and 0.75, respectively.
We then obtain: }

T%'E = (%_i.) (%%) (%%%g) = (1.5)(3.0)(1.0) = 4.5

Solving for c gives a value of 7§ = 0.818.

Note the combined effect of both sunny weather and the good-shortstop
results in a higher probability of success than either individual condition.

The key is the independence assumptions. The likelihood of the weather
being nice and the good-shortstop showing up are completely independent.
The chance the shortstop will show up is not changed by the weather. Similarly,
the weather is not affected by the presence or absence of the good-shortstop.
If the independence assumptions are violated : suppose the shortstop prefers
sunny weather — special consideration for the dependencies is required. The
independence assumptions also require that the weather and the appearance of
the good-shortstop are independent given either a win or a loss.

For an information retrieval query, the terms in the query can be viewed as
indicators that a given document is relevant. The presence or absence of query
term A can be used to predict whether or not a document is relevant. Hence,
after a period of observation, it is found that when term A is in both the query
and the document, there is an = percent chance the document is relevant. We
then assign a probability to term A. Assuming independence of terms, this can
be done for each of the terms in the query. Ultimately, the product of all the
weights can be used to compute the probability of relevance.

We know that independence assumptions are really not a good model of
reality. Some research has investigated why systems with these assumptions
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have performed reasonably well, despite their theoretical problems [Cooper,
1991]. For example, a relevant document that has the term apple in response
to a query for apple pie probably has a better chance of havin g the term pie than
some other randomly selected term. Hence, the key independence assumption
is violated.

Most work in the probabilistic model assumes independence of terms be-
cause handling dependencies involves substantial computation. It is unclear
whether or not effectiveness is improved when dependencies are considered.
We note that relatively little work has been done implementing these approaches.
They are computationally expensive, but more importantly, they are difficult
to estimate. It is necessary to obtain sufficient training data about term co-
occurrence in both relevant and non-relevant documents. Typically, it is very
difficult to obtain sufficient training data to estimate these parameters.

In figure 2.4, we illustrate the need for training data with most probabilis-
tic models. A query with two terms, q1 and qo, is executed. Five documents
are returned and an assessment is made that documents two and four are rel-
evant. From this assessment, the probability that a document is relevant (or
non-relevant) given that it contains term q; is computed. Likewise, the same
probabilities are computed for term go. Clearly, these probabilities are esti-
mates based on training data. The idea is that sufficient training data can be
obtained so that when a user issues a query, a good estimate of which docu-
ments are relevant to the query can be obtained.

Consider a document, d;, consisting of ¢ terms (wy,we, ..., w), where w;
is the estimate that term i will result in this document being relevant. The
weight or “odds” that document d; is relevant is based on the probability of
relevance for each term in the document. For a given term in a document, its
contribution to the estimate of relevance for the entire document is computed
as:

P(w;|rel)
P(w;|nonrel)

The question is then: How do we combine the odds of relevance for each term
into an estimate for the entire document? Given our independence assump-
tions, we can multiply the odds for each term in a document to obtain the odds
that the document is relevant. Taking the log of the product yields:

L P rel ‘ P(w;|rel
log (zI_I 73_(—”—)) = 1221 log (P(ui]nimrll))

=1 P(wi| nonrel)

We note that these values are computed based on the assumption that terms will
occur independently in relevant and non-relevant documents. The assumption
is also made that if one term appears in a document, then it has no impact on
whether or not another term will appear in the same document.
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Figure 2.4. Training Data for Probabilistic Retrieval

Query q: t, to

Documents retrieved

Relevant

T
i
i
|
|
1
|
|
i
1
1
|
|
|
|

P(t, | D, is relevant) =
P(t, | D, is relevant) =

P(t, | D, is relevant) =

u‘—k - ulm m]-

P(t, | D, is relevant) =

Now that we have described how the individual term estimates can be com-
bined into a total estimate of relevance for the document, it is necessary to
describe a means of estimating the individual term weights. Several different
means of computing the probability of relevance and non-relevance for a given
term were studied since the introduction of the probabilistic retrieval model.
In their 1976 paper, Robertson and Sparck Jones considered several methods
[Robertson and Sparck Jones, 1976]. They began by presenting two mutually
exclusive independence assumptions:

I1: The distribution of terms in relevant documents is independent and their
distribution in all documents is independent.

I2: The distribution of terms in relevant documents is independent and their
distribution in non-relevant documents is independent.
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They also presented two methods, referred to as ordering principles, for pre-
senting the result set:

O1: Probable relevance is based only on the presence of search terms in
the documents.

02: Probable relevance is based on both the presence of search terms in docu-
ments and their absence from documents.

IT indicates that terms occur randomly within a document—that is, the pres-
ence of one term in a document in no way impacts the presence of another term
in the same document. This is analogous to our example in which the presence
of the good-shortstop had no impact on the weather given a win. This also
states that the distribution of terms across all documents is independent uncon-
ditionally for all documents—that is, the presence of one term in a document
in no way impacts the presence of the same term in other documents. This is
analogous to saying that the presence of a good-shortstop in one game has no
impact on whether or not a good-shortstop will play in any other game. Simi-
larly, the presence of good-shortstop in one game has no impact on the weather
for any other game.

I2 indicates that terms in relevant documents are independent—that is, they
satisfy I1 and terms in non-relevant documents also satisfy I1. Returning to our
example, this is analogous to saying that the independence of a good-shortstop
and sunny weather holds regardless of whether the team wins or loses.

Ol indicates that documents should be highly ranked only if they contain
matching terms in the query (i.e., the only evidence used is which query terms
are actually present in the document). We note that this ordering assumption is
not commonly held today because it is also important to consider when query
terms are not found in the document. This is inconvenient in practice. Most
systems use an inverted index that identifies for each term, all occurrences
of that term in a given document. If absence from a document is required,
the index would have to identify all terms not in a document (for a detailed
discussion of inverted indexes see Section 5.1 ). To avoid the need to track the
absence of a term in a document, the estimate makes the zero point correspond
to the probability of relevance of a document lacking all the query terms—as
opposed to the probability of relevance of a random document. The zero point
does not mean that we do not know anything: it simply means that we have
some evidence for non-relevance. This has the effect of converting the 02
based weights to presence-only weights.

O2 takes O1 a little further and says that we should consider both the pres-
ence and the absence of search terms in the query. Hence, for a query that asks
for term 1 and term ty,—a document with just one of these terms should be
ranked lower than a document with both terms.
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Four weights are then derived based on different combinations of these or-
dering principles and independence assumptions. Given a term, ¢, consider the
following quantities:

N = number of documents in the collection
R

n

i

number of relevant documents for a given query ¢
number of documents that contain term ¢

i

r = number of relevant documents that contain term ¢

Choosing I1 and Ol yields the following weight:

wy = log (g)
N

Choosing 12 and O1 yields the following weight:

i
wy :Iog( n'fr)
N-R

Choosing I1 and O2 yields the following weight:

T
w3 = log ( Rt )
N-—n

Choosing 12 and O2 yields the following weight:

T
wy = log (———f—f%——-)
N—n)—(R-1)

Robertson and Sparck Jones argue that O2 is correct and that 12 is more
likely than Il to describe what actually occurs. Hence, wy is most likely to
yield the best results. They then present results that indicate that wy and w3
performed better than w and ws. Most subsequent work starts with wy and
extends it to contain other important components such as the within-document
frequency of the term and the relative length of a document. We describe these
extensions to wy in Section 2.2.3.

When incomplete relevance information is available, 0.5 is added to the
weights to account for the uncertainty involved in estimating relevance. Robert-
son and Sparck Jones suggest that, “This procedure may seem somewhat ar-
bitrary, but it does in fact have some statistical justification.” The modified
weighting function appears as:
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r+0.5
w = log R=r)Y+05
T Ve (n-1)40.5

(N—n)=(R=r)+05

The claimed advantage to the probabilistic model is that it is entirely based
on probability theory. The implication is that other models have a certain arbi-
trary characteristic. They might perform well experimentally, but ihey lack a
sound theoretical basis because the parameters are not easy to estimate. Either
complete training data are required, or an inaccurate estimate must be made.

This debate is similar to one that occurs when comparing a relational to an
object-oriented database management system (DBMS). Object-oriented DBMS
are sometimes said to model “real world" data, but lack sound theoretical basis.
Relational DBMS, on the other hand, have very solid set-theoretic underpin-
nings, but sometimes have problems modeling real data.

22.1.1 Example

Using the same example we used previously with the vector space model,
we now show how the four different weights can be used for relevance ranking.
Again, the documents and the query are:

() : “gold silver truck”

Dy: “Shipment of gold damaged in a fire.”

Dy: “Delivery of silver arrived in a silver truck.”
Dj3: “Shipment of gold arrived in a truck.”

Since training data are needed for the probabilistic model, we assume that
these three documents are the training data and we deem documents Dy and
D3 as relevant to the query.

To compute the similarity coefficient, we assign term weights to each term
in the query. We then sum the weights of matching terms. There are four
quantities we are interested in:

N = number of documents in the collection
n = number of documents indexed by a given term
R = number of relevant documents for the query

7= number of relevant documents indexed by the given term

These values are given in the Table 2.2 for each term in the query. As we
stated previously, Robertson and Sparck Jones described the following four
different weighting equations to estimate, for a given term, the likelihood that
a document which contains the query term is relevant.
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Table 2.2. Frequencies for Each Query Term

gold | silver | truck
3 3 3

3|32

2 1 2
2 2 2
1 1 2

w; = log {

Z]3 |l
|

ol

wo = lOg —(7—1—“_77

(N-R

T

.
w3 = log [——}-{—;}U—
(N=n) J

r
R=7)
(n—r)
N-n)-(R-r

wy = log

Note that with our collection, the weight for silver is infinite, since (n—7) =
0. This is because “silver” only appears in relevant documents. Since we
are using this procedure in a predictive manner, Robertson and Sparck Jones
recommended adding constants to each quantity [Robertson and Sparck Jones,
1976]. The new weights are:

(r+0.5)
(R+1)
(n+1)

L (N+2)

w) = log

[ (r40.5) 1
(R+1)
(n—r+0.5)

| (N=R+1) |

F (r+0.5)
R-r+40.5

(n+1)

L (N=n+1) ]

wy = log

w3 = log
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(r+0.5)
wi = log (R—r+0.5)
Wy = 108 (n—7+0.5)
(N-n—(R-1)105

Hising these equations, we derive the following weights:
gnld

D
— = —0.079
.6 :
sijver
[ {1+0.5) 05
2+1) ¥
wi; = log Ry jl = log ()-Z = 0.097
L G2
truck
el 0.833
wy = log | <37 J = log == = 0.143
(€65
gold
(140.5) 0.5
PNy .5
ur = log {(24_}»05)} log 075 —0.176
(3=2+1)
silver
(140.5) 0.5
[CESY U ey
o = 10(_7 I:FIFO.S) = log 095 = 0.301
3-2+1
truck
SeIy o 0.833
7T _ 0833
wy = log Toar0E) | — log 0on = 0.523
3-2+1 ’
gold
(140.5)
- 1.0
w3 = log [(2(21:35)" = 1o 5 = —0.176
B2+1D) '
silver
(140.5) L0
1 e-1y05) | _, 10 -
wy = log |i_———_-(l+l) } = log 0667 = 0.176
(3—1+1)
truck

(240.5) .

2-2405 9 Y

uv3 = l()g {(—(24»—1)—)-} = 1()g 1_5‘ = 0523
(3--2+1)
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gold

(2—1+0.5)

(140.5) .
wy = log [—— EQ"HO'S)} = log 3= -0.477
(3-2-21140.5) ’

silver

= 0477

1
(1-1+05 0.333

3-1-2+140.5

(1+0.5
2—-140.5
wy = log [——} = log
truck
(2+0.5) 5
(2-2+0.5) _ _
(3-2-2+2+0.5)

The results are summarized in Table 2.3.

Table 2.3. Term Weights

un wy w3 Wy
gold | -0.079 | -0.176 | -0.176 | -0.477
silver | 0.097 | 0.301 0.176 | 0.477
truck [ 0.143 { 0.523 } 0.523 | 1.176

Table 2.4. Document Weights

w1 wp w3 wy
D, | -0079 | -0.176 | -0.176 | -0.477
D, | 0240 [ 0.824 | 0.699 | 1.653
Dy | 0064 | 0347 | 0347 | 0.699

The similarity coefficient for a given document is obtained by summing the
weights of the terms present. Table 2.4 gives the similarity coefficients for each
of the four different weighting schemes. For D, gold is the only term to appear
so the weight for D is just the weight for gold, which is -0.079. For D, silver
and truck appear so the weight for D is the sum of the weights for silver and
truck, which is 0.097 + 0.143 = 0.240. For D3, gold and truck appear so the
weight for D3 is the sum for gold and truck, which is —0.079+40.143 = 0.064.

2.2.1.2 Results

Initial tests of the four weights were done on the 1,400 document Cranfield
collection. These showed that the third and fourth weights performed some-
what comparably, but were superior to the first and second weights. An addi-
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tional study against the 27,361 document UKCIS collection measured the dif-
ference in the first weight and the fourth weight [Sparck Jones, 1979a]. Again
a significant improvement was found in the use of the fourth weight.

Two other baseline tests were run. The first simply ranked documents based
on the number of term matches, the second test used inverse document fre-
quency as. an estimated weight. Both of these approaches were inferior to any
of the four weights, but the use of the idf was better than simply counting term
matches. In all cases, the ranking of the documents was D2, D3, D1—the same
ranking that was obtained with the vector space model in Section 2.1.

The number of times a term appears in a given document is not used, as
the weighting functions are based on whether or not the term appears in lots
of relevant documents. Thus, if term t appears 50 times over the span of 10
relevant documents and term u appears only 10 times in the same relevant
documents, they are given the same weight.

2.2.1.3  Incorporating Term Frequency

Term frequency was not used in the original probabilistic model. Croft and
Harper incorporated term frequency weights in [Croft and Harper, 1979]. Rel-
evance is estimated by including the probability that a term will appear in a
given document, rather than the simple presence or absence of a term in a doc-
ument. The term frequency is used to derive an estimate of how likely it is for
the term to appear in a document. This new coefficient is given below.

t t
N —n;
SC(Q,Dj) =C> qidij + > P(dij)qidij log ( - z)
1=1 i=1 t

The P(d;;) indicates the probability that term ¢ appears in document j, and

can be estimated simply as the term frequency of term ¢ in document j. Unfor-

tunately, this frequency is not a realistic probability so another estimate, nor-

malized term frequency is used. The normalized term frequency is computed

as:

tfij
maz(tfij,tfaj,... . tfi;)

Tl,tfij =

Normalized term frequency is the ratio of the term frequency of a given term
to the maximum term frequency of any term in the document. If term ¢ appears
ten times in the document, and the highest term frequency of any other term in
the document is 100, the nt f;; is 0.1.

Croft and Harper compared the use of the normalized term frequency, the
unnormalized term frequency, and a baseline without any use of term fre-
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quency for the Cranfield collection and the 11,429 document NPL collection.
The results were statistically significant in that the normalized term frequency
outperformed the baseline. In many cases, the unnormalized term frequency
performed worse than the baseline.

2.2.2 Non-Binary Independence Model

The non-binary independence model developed by Yu, Meng, and Park in-
corporates term frequency and document length, somewhat naturally, into the
calculation of term weights [Yu et al., 1989]. Once the term weights are com-
puted, the vector space model (see Section 2.1) is used to compute an inner
product for obtaining a final similarity coefficient.

The simple term weight approach estimates a term’s weight based on whether
or not the term appears in a relevant document. Instead of estimating the prob-
ability that a given term will identify a relevant document, the probability that
a term which appears tf times will appear in a relevant document is estimated.
For example, consider a ten document collection in which document one con-
tains the term blue once and document two contains ten occurrences of the
term blue. Assume both documents one and two are relevant, and the eight
other documents are not relevant. With the simple term weight model, we
would compute the P(Rel | blue) = 0.2 because blue occurs in two out of ten
relevant documents.

With the non-binary independence model, we calculate a separate probabil-
ity for each term frequency. Hence, we compute the probability that blue will
occur one time P(1 | R) = 0.1, because it did occur one time in document one.
The probability that blue will occur ten times is P(10 | R) = 0.1, because it did
occur ten times in one out of ten documents.

To incorporate document length, weights are normalized based on the size
of the document. Hence, if document one contains five terms and document
two contains ten terms, we recompute the probability that blue occurs only
once in a relevant document to the probability that blue occurs 0.5 times in a
relevant document.

The probability that a term will result in a non-relevant document is also
used. The final weight is computed as the ratio of the probability that a term
will occur tf times in relevant documents to the probability that the term will
occur #f times in non-relevant documents.

More formally:

o, PiIR)
° P((illN)
where P(d;|R) is the probability that a relevant document will contain d; oc-
currences of the ¥ term, and P(d;|N) is the probability that a non-relevant
document has d; occurrences of the ith term.
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2.2.2.1 Example

Returning to our example, the documents and the query are:
Q : “gold silver truck”
D,: “Shipment of gold damaged in a fire.”

Dy: “Delivery of silver arrived in a silver truck.”
Ds3: “Shipment of gold arrived in a truck.”

Table 2.5. 'Term to Document Mapping

docid | a | arrived | damaged | delivery | fire | gold | in | of | shipment [ silver | truck
D, I 0 1 0 1 1 11 1 0 0
Dy 1 I 0 1 0 0 11 0 2 1
D3 1 I 0 0 0 | 111 1 0 1
Q 0 0 0 0 0 1 010 0 1 |

Thus, we have three documents with eleven terms and a single query (see Table
2.5). The training data include both relevant and non-relevant documents. We
assume that document two and three are relevant and document one is not
relevant (we are free to do this as relevance, after all, is in the eyes of the
beholder). Normalizing by document length yields as shown in Table 2.6:

Table 2.6. Normalized Document Length

docid | a | arrived | damaged | delivery | fire | gold | in | of | shipment | silver | truck
pifsl o | o [rla el 4 To]o
Do |41 & | o Lok doloqalil o [ 3]
b3l ] o [ o oy fafa] 2 o]

We do not normalize the query. The terms present in the query are gold, silver,
and rruck. For D) the weight of gold is

P(YIR :
log —(IL’-—) =log 2 = —0.3010.
P(LIN) 1

Of the two relevant documents, one has a frequency of % and one does not,
so P(+|R) = 5. However, the only non-relevant document has gold with a
frequency of % ) P(%QN) =1,
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For silver in D we obtain:

g [2012)

1
= log = = —0.3010.
P(()]N)] 083 1.3010

Weights for each term and a given term frequency can be computed in this way
for each term in a document. Veciors can then he constructed and asimilarity
coefficient can be computed beiween a query and each docuiment,

With our example, there are only a few {requencies te consider. but i normal
collection would liave a large number of frequencies. oxpecially it Jocument
length normabization is used. To alleviaie this probiens, s possibic 1o agzre-
gate ail of the frequencics into classes. Thus, all of the docvinents with vore
frequency would be in one class, but for terms with positive terus irequency,
intervals (0, f1], (f1, f2], - -, (fn, 00) would be selected such that the intervals
contain approximately equal numbers of terms. To obtain the weights, I’(d;|R)
and P(d;|N) are replaced by P(d; € I;|R) and P(d; € I;|N), respectively.
I is the j% interval (fj—2, fj—1]. The weight becomes:

[ Pe L
© P(dz S I]"]V)

2.2.3 Poisson Model

Robertson and Walker developed a probabilistic model which uses a Pois-
son distribution to estimate probabilities of relevance and incorporate term fre-
quency and document length [Robertson and Walker, 1994]. In the standard
probabilistic model, the weighting is given by:

w = log p(l1—4q)

q(1-p)

where p is the probability that the term is present given that a document is
relevant, and q is the probability that the term is present given that a document
is not relevant.

To incorporate the term frequencies, pyy is used. This indicates the prob-
ability that the term is present with frequency tf, given relevance and gy is
the corresponding probability for non-relevance. The subscript O denotes the
absence of a term. The weighting then becomes:

o (per)(q0)

Y= (ger)(po)

The assumption is made that terms randomly occur within the document ac-
cording to the Poisson distribution.
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(L) =

The parameter m differs according to whether or not the document is about the
concepts represented by the query terms. This leads to the weighting:

w0 = log P =P)B) e (ge D + (1 - ¢))
g+ (1-g)(B)Wel)(pel-) + (1 -p))

where X is the Poisson mean for documents which are about the term ¢,

i is the Poisson mean for documents which are not about the term ¢,

7 is the difference: \ — p,

p’ is the probability that a document is about ¢ given that it is relevant, and
q' is the probability that a document is about ¢ given that it is not relevant.

The difficulty with this weight is in its application; it is unlikely that there
will be direct evidence for any of the four parameters: p’, ¢, A, u1. The shape of
the curve is used, and simpler functions are found, based on the more readily
observable quantities: term frequency and document length, that have similar
shape. To incorporate term frequency, we use the function:

w =w tf
ky+tf

where w is the standard probabilistic weight, and k; is an unknown constant
whose value depends on the collection and must be determined experimentally.

Document length is also taken into account. The simplest means to account
for document length is to modify the equation given above for w’ by substitut-

ing:

L k(@)
! A
d = document length
A = average document length

The new equation for v/ is:

i (d
(klg~ ) +tf
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The symmetry between documents and queries is used to incorporate the query
term frequency in a fashion similar to document frequency. A tuning parameter
k, is used to scale the effect of document term frequency. Similarly, another
parameter A3 is used to scale the query term frequency (gt f). Finally, a closer
match to the 2-Poisson estimate can be attempted with an additional term pos-
sessing a scaling factor of k. This term is:

(A—d) ))
k
(1@l (57a)
where ks is a constant that is experimentally determined, and |Q| is the number
of query terms. This term enables a high value of ko to give additional empha-

sis to documents that are shorter than average. These modifications result in
the following similarity coefficient:

t T
[=0] tfi qtf;
Di -
SC(Q, Di) ];108( (1) ) ((‘klgzt) +tfij> <k3+qtfj) "

(N-n)-(R-T)
(wel(55a))
where:
N = number of documents in the collection
n = number of documents indexed by a given term
R = number of relevant documents for the query
r = number of relevant documents indexed by the given term
tfi; = term frequency of term j in document ¢
qtf; = term frequency of term j in query Q
dl; = number of terms in document
|Q| = number of terms in the query
A = average document length
ki, ko,k3 = tuning parameters

Small values for k; and k3 have the effect of reducing the impact of term
frequency and query term frequency. If either is zero, the effect is to eliminate
that quantity. Large values of k; and k3 result in significantly reducing the size
of the first term.

Including a factor of (k1 + 1) and (k3 + 1) in the numerator does not af-
fect the overall ranking because these factors apply equally to all documents.
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However, it does allow for the use of large values of A} or k3 without reducing
the magnitude of the first term. Additionally, this normalizes the impact of the
tuning parameters. The idea is that when the term frequency is one, there is no
need to change the original weights.

To normalize for document length, the similarity measure also includes a
denominator of A in the first term. This makes good sense if the only reason
a document is long is because it is simply giving more detail about the topic.
In this case, long documents should not be weighted any more than short doc-
uments. However, it could be that a document is long because it is discussing
several unrelated topics. In this case, long documents should be penalized. A
new tuning parameter, b, allows for tuning a query based on the nature of the
document collection. This parameter is incorporated by substituting K for k,
in the factor involving tfi;, where:

K=k ((1—b)+b (%))

Incorporating the tuning parameter b and placing (k; + 1) and (k3 4 1) in the
numerator yields:

t ' T
—r k 1)t ke Dat
SCQ.D) = 3 log ( " ) [t (1= s
J=1 o= (R=1) C+tf 3+ qt f;
A —dl
ko)O
* (( 2)'Q‘A + dl,—)

For the experiments conducted in [Robertson et al., 1995], these values were

takenas (k; = 1,k = 0, k3 = 8, b = 0.6).

2.2.3.1  Example

Using the same documents and query as before, we previously computed
uy as:

gold =-0.477
silver =0.477
truck = 1.176

avgdl = 52 = 7.33
Using the same parameters for k). ko, k3. b, we compute values for dl;:

(//1 =7
dly = 8
(113 =7
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For D, the only match with the query is “gold” which appears withatf = 1;
s0, the SC for Dj is just the value for “gold” (Note the length of dl for Dy is
seven).

(0.6)(7)

K=1((1-06
! <( )+ s

> =0.973

Now that we have the value of K, it is possible to compute the similarity coef-
ficient for D;. The coefficient is a summation for all terms, but only one term
“gold” will have a non-zero value. We start with the value of wy = —0.477
which was obtained in Section 2.2.1.1.

(1+1)(1)> (8+1) ( 2 )
SC(Q,Dy) = —0.4 = 0477 [ —— ) = —0.484
C(@, D) =0 77<0.973+1 8+1 04T To73 048

For D the terms that match the query “silver” and “truck” result in non-zero
values in the summation.

(().6)(8))
K= 4 = 1.055
1 (0 + 733 05

For “silver”, t f12 = 2:

v = a7 (LY (84020) g

For “truck”, t fog = 1:

= 7 (U DY (1Y

SC(Q, Dy) = 1.124 + 1.145 = 2.269

For D3, dl = 750K =0.973 (as in the case of D). We have two terms “gold”
and “truck” that both appear once. For “gold”, t fi3 = 1.

B A+ DM (B+DMN - ae
wy = ().477(0'97“1)( S >_ 0.484

For “truck”, t fo3 = 1.

wy = 1.176 (

N

(1+1)(1)> /(éinu)) e
TErFSVASEES! e

SC(Q, D3) = —0.484 + 1.192 = 0.708
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Comparing the SC, with the term frequency, to the base SC, without the term
frequency we see in Table 2.7 that again, the document ranking is the same:
D27 D37 Dl .

Table 2.7. Poisson Model: Final Similarity Measure

Notf tf
D, | 0477 | -0.484
D, | 1.653 | 2.269
Ds | 0699 | 0.708

224 Term Components

A variation on the standard probabilistic model is given in [Kwok, 1990].
The premise of the algorithm is to rank documents based on the components
of the document. For example, a document can be partitioned into multiple
paragraphs, and a similarity coefficient can be computed for each paragraph.
Once this is done, a measure is needed to combine the component similarity
coefficients to develop a ranking for the entire document. Kwok proposes the
use of a geometric mean (for n numbers, the nt? root of their product) to
effectively average the individual components,

The algorithm used to rank a given component certainly can vary, and the
size of a component can also vary. If the whole document is used as a compo-
nent, then we are back at traditional probabilistic information retrieval.

The basic weight for a given component is defined as the ratio of the proba-
bility of the component being relevant to the probability that it is not relevant.

This is:
Wop = ln <-—L) + ln (_(l;sa‘”))
(l - T(zk) Sak

Tak and s,k are weights that can be estimated in one of three different ways:

= Initial estimate using self-relevance. A component which is relevant to
itself, results in:

Pk = Qak
a La

F

Sak = —
a Nw

where L, is the number of components in the document, and Fj, is the
number of occurrences of term & in the collection. Ny, is the number of
distinct components in the collection.
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s Inverse collection term frequency (ICTF). The estimate of s above is
good because there are probably more non-relevant than relevant docu-
ments. Hence, a term that is infrequent in the entire collection has a low
value of s;x. Assume the initial estimate of 7qx is poor and just use a con-
stant p. Using 7k as a constant results in the whole weight being roughly
equivalent to sik. ik is estimated by removing the one relevant document,
d;) from the estimates that use the whole collection. This is done by using
the number of terms, d;, that match the assumed “relevant document.” s;i

is then computed as:
sk = (ﬂ:_d_k)
ik Nw — Li

Using p in our weight computation yields the following weight which is

very close to the idf.
1—s;
wik:ln{ P ]+1n{-— qlk}
l1-p Sik

» Essentially, weights are computed based on the use of feedback from the
user. (Use of relevance feedback will be discussed in more detail in Section
3.1). Once the estimates are obtained, all that remains is to combine the
component weights—in either query focused means, a document focused
measure, or a combined measure. Using the query as focus, the query is
given, and all the weights are computed as related to the query. The geo-
metric mean is then computed for each of the components. This reduces
to:

> () v
i=1 L;

A document focused measure computes the components of the query and then
averages them in relation to a given document. This reduces to:

k

3 (32)

i=1 t

The combined measure can then be obtained. This combined measure is simply
the sum of the query focused and the document focused measures given as:

£ (8) £ 0
Li oL

i=1 ¢
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The component theory was shown to be comparable to term-based retrieval,
and superior for retrieval in the presence of relevance feedback. The combi-
nation of query focused and document focused retrieval was almost always
shown to be superior than either query focused or document focused retrieval.

2.2.5  Key Concerns with Probabilistic Models

Typically, probabilistic models must work around two fundamental prob-
lems: parameter estimation and independence assumptions. Parameter estima-
tion refers to the problem that accurate probabilistic computations are based
on the need to estimate relevance. Without a good training data set, it is often
difficult to accurately estimate parameters. The second problem is the use of
independence assumptions. It is clear that the presence of the term new in-
creases the likelihood of the presence of the term york but many probabilistic
models require this assumption even though it is not a realistic assumption.

2.2.5.1 Parameter Estimation

The need for good parameter estimation was clearly documented in the
1970s. Initial experiments with simple term weights partitioned the document
collection into an even and an odd component. The even component was used
as training data; after relevance information was obtained, it was used to re-
trieve data in the odd component. For many applications, the a priori relevance
information is not known. A follow-up paper used reduced relevance informa-
tion [Sparck Jones, 1979b]. The effect of using only the best one or two most
relevant documents as training data, instead of using all relevant documents
was measured. For the small Cranfield collection, results from using fewer
relevant documents were comparable to using all relevant documents. Unfor-
tunately, when the test was run on the larger UKCIS, the results with only two
relevant documents were inferior to results using all relevant documents.

The initial model did not indicate how the process should start. Once rele-
vance information is available (via a training set), it is possible to conduct new
searches. In an on-line system where it is not possible to guess which queries
will be asked in advance, it is not possible to use the weighting functions given
above. They all require values for 7 and R which can only be obtained by run-
ning a query and examining the relevant documents. Certainly, it is possible
1o use another technique for the initial search, and then ask users for relevance
information on the results of the initial search. This information can then be
used for subsequent searches. This technique is called relevance feedback and
is discussed in more detail in Section 3.1.

Using the probabilistic weights as a means of implementing relevance feed-
back relegates the probabilistic model to an interesting utility that can be ap-
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plied to an arbitrary retrieval strategy. A cosine measure can be used to identify
an initial ranking, and then the probabilistic weights can be used for relevance
feedback.

Using the probabilistic model without any a priori relevance information
creates problems which are addressed in [Croft and Harper, 1979]. In doing
50, it becomes clear that the probabilistic model is a retrieval strategy that is
capable of ranking documents without any other assistance. The key is that we
assume (without any relevance information), the probability that a given term
will induce relevance is equal for each term. Thus, the following similarity
coefficient is obtained:

t t

SOQ. D) = O audyy + 3 adylog

i=1 i=1 g

N = number of documents in the collection

n; = number of documents indexed by term :
di; = 1, if term ¢ appears in document j
d;; = 0, if term 7 does not appear in document
¢; = 1, if term i appears in the query

gi = 0. if term ¢ does not appear in the query

C is a constant that can be varied to “tune” the retrieval. The term weight of
’\—"7';'—1"& i< very close to the inverse document frequency of Z\l for large document
collections (large values of N). Hence, the whole expression is very close to the
tf-idf that was used in the vector space model.

The authors tesicd this SC against the cosine coefficient and a coefficient
obtained by simply summing the idf’s of each term. The new SC performed
slightly better, but it is important to remember that the tests were run on the
small Cranfield collection.

Recently, Croft and Harper’s work on the problem of computing relevance
weights with little or no relevance information was improved {Robertson and
Walker, 1997]. They note that the weighting scheme of Croft and Harper can,
under some circumstances, lead to negative weights.

In the original model by Robertson and Sparck Jones, two probabilities were
used to determine the weighting. The first value, p, estimates tor a given term
the probability that a document containing the term will be relevant. The prob-
ability ¢ estimates the probability that a document containing the term wiil
not be relevant. In previous models, p and g are assumed to be constant, but
Robertson and Walker allow p to vary as a function of known evidence of rel-
evance.
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Specifically, a weighting function that is developed with no information
gives an inverse collection frequency weight (or some slight variation). At
the other extreme, with a large amount of relevance information, the weighting
function is determined by the relevance information. The equation from Croft
and Harper can take on negative weights (when a term appears in over half of
the document collection). Robertson and Walker developed new equations that
are tunable and that estimate the weights of p and ¢ independently. That is, in-
formation about relevance only influences the weight due to p and information
about non-relevance only influences the weight due to q.

The new weight is given by:

ks N R F r+0.5
k5+R<4+ O"’N—n>+k5+R Og(R—r-H).S)

w
ke n ) (S +0.5)
Tho+ S8 <N - n) TR 15 % <(S —s +o.5))
where
R = number of relevant documents
= number of relevant documents indexed by the given term

S = number of non-relevant documents

s = number of non-relevant documents which contain the term
ka,ks, ks = tuning constants, where k4 > 0

The first two terms give the component of the weight due to relevance infor-
mation, and the last two terms give the weight due to non-relevance informa-
tion. (Note that if there is no knowledge (R=S=0), then the equations reduce
to k4 + log %) k4 measures how good the query term should be, while ks
and k; measure the sensitivity to relevance and non-relevance, respectively. A
statistically-based argument can be made that, instead of using R and S to scale
the terms in the equation, the square roots of R and S should be used.

2.25.2  Independence Assumptions

The key assumption that provides for a simple combination of term weights
to compute the probability of relevance is the assumption that the terms appear
independent of one another. Because this assumption is false, it was suggested
that the entire model is derived from a “faulty theory” [Cooper, 1991]. In
fact, the inference network strategy and the logistic regression utility are both
designed to work around the problem of independence assumptions. These are
discussed in Sections 2.4 and 3.5, respectively.
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Papers in the late 1970°s and early 1980’s start to address the failure of
the independence assumption [Rijsbergen, 1977, Yu et al., 1983], but they
all require co-occurrence information which is very computationally expen-
sive to obtain. Van Rijsbergen suggests that related terms should be grouped
together by using simple clustering algorithms and then the dependencies be-
tween groups can be obtained [Rijsbergen, 1977].

With increased computational speed, these approaches may soon be more
tractable. To our knowledge, none of these modifications have been tried on a
large test collection.

2.3  Language Models

A statistical language model is a probabilistic mechanism for “generating” a
piece of text. It thus defines a distribution over all the possible word sequences.
The simplest language model is the unigram language model, which is essen-
tially a word distribution. More complex language models might use more
context information (e.g., word history) in predicting the next word [Charniak,
1993, Rosenfeld, 2000].

Despite more than twenty years of using language models for speech recog-
nition [Hodjat et al., 2003] and language translation, their use for information
retrieval started only in 1998 [Ponte and Croft, 1998]. The core idea is that
documents can be ranked on their likelihood of generating the query. Con-
sider spoken document recognition, if the speaker were to utter the words in a
document, what is the likelihood they would then say the words in the query.
Formally, the similarity coefficient is simply:

SC(Q, Di) = P(Q|Mp,)

where Mp, is the language model implicit in document D;.

There is a need to precisely define what we mean exactly by “generating” a
query. That is, we need a probabilistic model for queries. One approach (pro-
posed in [Ponte and Croft, 1998]) is to model the presence or absence of any
term as an independent Bernoulli event and view the generation of the whole
query as a joint event of observing all the query terms and not observing any
terms that are not present in the query. In this case, the probability of the query
is calculated as the product of probabilities for both the terms in the query and
terms absent. That is,

SC(Q,Di) = [] Pt;1Mp,) [T (1~ P(tj|MDp,))
teQ tigQ
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The model p(t;|Mp,) can be estimated in many different ways. A straightfor-
ward method is:

p(tjljth) = pml(tj “WD:‘)

where pm(t;|Mp,) is the maximum likelihood estimate of the term distribu-
tion (i.e., the relative term frequency), and is given by:

_ tf(t]" Di)

pml(t]lMDz) - dl[)

where dlp, is the document length of document D;.

Figure 2.5. Language Model
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The basic idea is illustrated in Figure 2.5. The similarity measure will work,
but it has a big problem. If a term in the query does not occur in a document, the
whole similarity measure becomes zero. Consider our small running example
of a query and three documents:
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Q : “gold silver truck”

D;: “Shipment of gold damaged in a fire”

D,: “Delivery of silver arrived in a silver truck”
Dj3: “Shipment of gold arrived in a truck”

The term silver does not appear in document D;. Likewise, silver does not
appear in document D3 and gold does not appear in document D5. Hence, this
would result in a similarity coefficient of zero for all three sample documents
and this sample query.
Hence, the maximum likelihood estimate for
_ tf(silver,D;)

pmu(silver|Mp,) = *——(”D 0

1

23.1 Smoothing

To avoid the problem caused by terms in the query that are not present in a
document, various smoothing approaches exist which estimate non-zero values
for these terms. One approach assumes that the query term could occur in this
model, but simply at no higher a rate than the chance of it occurring in any
other document. The ratio %fsi was initially proposed where cf; is the number
of occurrences of term ¢ in the collection, and cs is the number of terms in the
entire collection. In our example, the estimate for silver would be % = .091.

An additional adjustment is made to account for the reality that these doc-
ument models are based solely on individual documents. These are relatively
small sample sizes from which to build a model. To use a larger sample (the
entire collection) the following estimate is proposed:

Zd d Pnz(thd)
pavg(t) — (te )dftl

where df ; is the document frequency of term ¢, which is also used in computing
the idf as discussed in Section 2.1).

To improve the effectiveness of the estimates for term weights it is possible
to minimize the risk involved in our estimate. We first define f; as the mean
term frequency of term ¢ in the document. This can be computed as f; =
Pavg(t) X dlg. The risk can be obtained using a geometric distribution as:

a tfi.a
_ (10 _ e\
Ria= (1.0+f}> X (1.0+ft>

The first similarity measure described for using language models in infor-

. . . . C .
mation retrieval uses the smoothing ratio <+ for terms that do not occur in the
query and the risk function as a mixing parameter when estimating the values
for w based on small document models. The term weight is now estimated as:



48 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

(1-R(t.d) « Rt
P(tnMd;):{fg(t’d) < pPD it ef(t,d) > 0

- otherwise.

2.3.2 Language Model Example

We now illustrate the use of this similarity measure with our running example:
There are three documents in our test collection. There are 22 tokens. So,
cs=22. The total number of tokens in documents D, Dy and D3 are 7, 8, and
7, respectively. Table 2.8 contains values for dlg.

Table 2.8. Term Occurrence

Dy | D2 | D3
dlg 7 8 7

df, the document frequency of ¢, is listed in Table 2.9. We use the same term
ordering as described in Section 2.1.1.

Table 2.9. Document Frequency

-

a | arrived | damaged | delivery [ fire | gold [ in | of | shipment | silver | truck
dfy |32 1 1 1 2 31312 1 2

cfy, the raw count of token ¢ in the collection is given in Table 2.10.

Table 2.10. Collection Frequency for Each Token

=
=

fire | gold | in | of | shipment | silver trudg_»]
1 2 31342 2z 2 |

cft 13

tth,d, the raw term frequency of term ¢ in document d is given in Table 2.11.
irst, we need to calculate . (t|My), the maximum likelihood estimate of

the probability of term t under the term distribution for document d. For each
term, t, P (t|My) = t—é—}')—d is given in Table 2.12.
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Table 2.11. Raw Term Frequency

a | arrived | damaged | delivery | fire | gold [ in | of | shipment | silver | truck
Dy j1]0 1 0 1 1 {1 [1 0 0
D11 0 1 0 |0 11110 2 1
D3 |1]1 0 0 0 ] IR 0 1

Table 2.12. Maximum Likelihood for Each Term

pmi(t|Mg) D, D, D3
a 0.143 | 0.125 | 0.143
arrived 0] 0.125 1 0.143
damaged 0.143 0 0
delivery 0] 0.125 0
fire 0.143 0 0
gold 0.143 0 0.143
in 0.143 | 0.125 | 0.143
of 0.143 | 0.125 | 0.143
shipment 0.143 0| 0.143
silver 0| 0.250 0
truck 0] 0.125 | 0.143

Second, we calculate the mean probability of term ¢ in documents which con-
tain the term. The equation is:

Pou(t|M,
Paug(t) = 2 d(ted) dfrtnl( |Ma)

For the term “arrived”, it only appears in D and D3, so:

Pry(arrived|Mp,) 4+ Pry(arrived|Mp,)
dfarrived

Poyg(arrived) =

Using our previous estimates: we know that P, (arrived|Mp,) = 0.125,
Pr(arrived|Mp,) = 0.143 and df,rriveq¢ = 2. Thus, Poyglarrived) =
(0.125 + 0.143) /2 = 0.134. The remaining terms are given in Table 2.13.

Third, we calculate the risk for a term ¢ in a dacument d. To do that, f. the
mean term frequency of term ¢ in a document is computed by the following
equation fy = Pyyg(t) x dly. f; of each term ¢ is given in Table 2.14. We then
use the following risk function to obtain Equation 2.3.
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Table 2.13.  Average Probability for Each Term

a arrived | damaged | delivery [ fire | gold |in of shipment | silver | truck
Pauvg(t) [0.137]0.134 0.143 0.125 }0.143[0.143]0.137]0.137]0.143 0.250(0.134

Table 2.14. Mean Term Frequency for Each Term

ft la arrived [ damaged | delivery | fire | gold |in of shipment | silver | truck
D; {0.958(0.938 |1.000 0.875 1.000 { 1.000 | 0.958 [ 0.958 | 1.000 1.750 1 0.938
Do 1 1.096]1.071 |1.143 1.000 [ 1.143]1.143]1.096]1.096]1.143 2.000 | 1.071
D3 [0.958{0.938 |1.000 0.875 1.000 | 1.00010.958 { 0.958 | 1.000 1.75010.938

. I tfia

1.0 7, '
_ (10 e 23
Fira (1.0+ft> X (1.0+f,) (2.5)

The risk values per term per document are shown in Table 2.15.

Table 2.15. Risk for Each Term
R4 D, D D3
a 0.250 | 0.249 | 0.250
arrived 0.516 | 0.250 | 0.250
damaged | 0.250 | 0.467 | 0.500
delivery 0.533 | 0.250 | 0.533

fire 0.250 | 0.467 | 0.500
gold 0.250 | 0.467 | 0.250
in 0.250 | 0.249 | 0.250
of 0.250 | 0.249 | 0.250
shipment | 0.250 | 0.467 | 0.250
siiver 0.364 | 0.148 | 0.364
truck 0.516 | 0.249 | 0.250

Now, we use the risk value as a mixing parameter to calculate P(Q|My), the
probability of producing the query for a given document model as mentioned
before. It consists of two steps. Initially, we calculate P(t|A;) as shown in
Equation 2.4. The italicized terms in Table 2.16 match a query term. For all
other term occurrences the smoothing estimate, P(t|M,) = % is used.
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P(t|Mg) = Py (t|Mg) -0 Red) 5 P, (t)Fea (2.4)

Finally, using the equation 2.5, we compute a final measure of similarity,
P(Q|Mj). The actual values are given in Table 2.17.

Table 2.16. Expected Probability for Each Term (with Smoothing)

P(i[My) | Di| D2 | Ds
a 0.141 | 0.128 | 0.141
ammived | 0.091 | 0.127 | 0.141
damaged | 0.143 | 0.045 | 0.045
delivery | 0.045 | 0.125 | 0.045

fire 0.143 | 0.045 | 0.045
gold 0.143 | 0.091 | 0.143
in 0.141 | 0.128 | 0.141
of 0.141 | 0.128 | 0.141
shipment | 0.143 | 0.091 | 0.143
silver 0.091 | 0.250 | 0.091
truck 0.091 | 0.127 | 0.141
P(QIMq) = ] P(tIMa) x T](1.0 - P(t|My)) (2.5)
teQ t¢Q

Table 2.17.  Similarity using Language Models
D1 D2 D'K
P(Q|My) | 0.000409 | 0.001211 | 0.000743

Hence, as with all other strategies that we describe, the final ranking is Dy, Ds
and Dl.

Although other terms in the query match document D (e.g.; gold), the sim-
ilarity measure results in zero for this document simply because one term does
not occur. The model we have just presented is based on Ponte and Croft’s
original model, which models term presence and absence in the query but ig-
nores query term frequency or the number of occurrences of a term in the query.
Hence it does not matter if the term “silver” occurs once or twice in the query.
Other language modeling work, including early work in TREC-7, models the
occurrence of every query term with a unigram language model and thus in-
corporates term frequencies [Miller et al., 1999, Hiemstra and Kraaij, 1998].

Specifically, for a query, Q@ = qi1,4a, ..., gm, the probability p(Q]D) now
incorporates t f(¢, Q) to include the query term frequency (as shown in Equa-
tion 2.6).
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p(QID) = [ plailMp) = [] p(tIMp) /4@ (2.6)
1=1 te@

Such a multinomial model is more similar to the language models used in
speech recognition. A discussion of this distinction can be found in [McCal-
lum and Nigam, 1998, Song and Croft, 1999]. When using multinomial mod-
els, we reduce the retrieval problem to one of language model estimation, i.e.,
estimating p(w|Mp).

Numerous smoothing functions are used to compute this estimate and de-
tailed surveys are found in [Chen and Goodman, 1998, Manning and Schutze,
1999]. The Good-Turing estimate adjusts raw term frequency scores with the
transformation given in equation 2.7:

* E(le+ l)
tf*=({f+1) E(Ny) 2.7
This estimate was used to improve initial language models [Song and Croft,
1999]. Unfortunately, this estimate requires the count of words which have the
same frequency in a document. This is a computationally expensive task.

A study of three efficient smoothing methods is given in [Zhai and Lafferty,
2001b]. The three methods were Jelinek-Mercer [Jelinek and Mercer, 19801,
Bayesian smoothing using Dirichlet priors [MacKay and Peto, 1995], and Ab-
solute Discounting [Ney et al., 1994]. For long queries, on average, the Jelinek-
Mercer smoothing approach is better than the Dirichlet prior and absolute dis-
counting approaches. For title only queries, experimentation demonstrated that
Dirichlet prior is superior to absolute discounting and Jelinek-Mercer.

A general description of smoothing methods is to define them in terms of
their ability to compute the probability of a term given the presence of a doc-
ument: P(t|d). Smoothing methods tend to reduce probabilities of terms that
are observed in the text and boost the probabilities of terms that are not seen.
As a last resort, unseen terms can simply be assigned a probability proportional
to their probabilities according to the collection language model p(t]|C).

The Jelinek-Mercer method uses a linear interpolation of the maximum like-
lihood model and the collection model. The parameter X is used to control the
influence of each model. More formally:

pa(tld) = (1 = A)ppu(t|d) + AP(w|C)
Absolute discounting simply lowers the probability of terms that have occurred
by subtracting a simple constant from their frequency. More formally:
mar(tf(t,d) —4,0)
S tf(t.d)

ps(t|d) = + aP(t|C)
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where 6 € [0, 1] is a constant and

|l
o=0—
ld|

where |d|, is the number of unique terms in document d and |d| is the number
of terms in the document.

For long queries, on average, the Jelinek-Mercer smoothing approach is bet-
ter than the Dirichlet prior and absolute discounting approaches. For title only
queries, experimentation demonstrated that Dirichlet prior is superior to abso-
lute discounting and Jelinek-Mercer. In the Bayesian smoothing using Dirich-
let priors, the model is given in Equation 2.8.

Returning now to our example, since our sample query contains only three
terms, we treat it as a title query. Thus, in the following, we give a brief exam-
ple illustrating the computation of relevance using the Dirichlet prior smooth-
ing method.
tf(t,d) + uP(C)

Zt tf(tv d) + K

where t f (¢, d) is the number of occurrences of term ¢ in document d. 3~ t f(t, d)
is the total count of terms in document d. P(¢t|C) is the collection language

model and is calculated as the number of occurrence of term ¢ in the collection
C divided by the total number of terms in C, namely, —i———iﬁ (td)

Smoothing for terms that do not occur in the collection can be done with a

Laplace method [Katz, 1987]. Hence, we have P(t|C) = %fs—(t—’@, where

N is the number of distinct terms in the collection. In our example, since all

 pultld) = (2.8)

query terms appear in the collection, we simply use Ly. In general,
smoothing of the collection language model has only an insignificant effect as
cs is typically quite large.

Finally, u is an adjustable smoothing parameter. Experimentation has shown
that the optimal prior seems to vary from collection to collection. However, it
is frequently around 2000. Due to our desire to make the example readable, we
will use a value of three in our example (this reduces the number of significant
digits needed to present a useful example on this small three document test
collection).
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First, for each term ¢, we compute 3, t f(t. d). The values are given in Ta-
ble 2.18. In our sample collection, there are 3 documents. Totally, there are 22

tokens. So, cs = 22. By using L%({—d—) we obtain P(t|C), as shown in Table
2.19. Second, the total count of terms in document d is, once again, given in Ta-
ble 2.20. Third, tf(¢, d) is, once again, given in Table 2.21. We now compute
the smoothed probabilities by using p, (t|d) = % The new proba-
bilities are shown in Table 2.22. A value of 3 is used for (¢ to reduce the number
of significant digits needed for this example. A new similarity measure is com-
puted as P(Q|d) = [], p,(t|d), and the results are shown in Table 2.23. For
example the similarity between document one and the query can now simply
be computed as the product of the smoothed probabilities for the three terms in

the query. For document one this is (0.1378)(0.0091)(0.0091) = 0.0000114.

Table 2.18. ), tf(t,d) for Each Term

o

arrived | damaged | delivery | fire | gold | in | of | shipment | silver | truck
JHftd)[3]2 1 1 12 3342 2 2

Table 2.19. P(t|C) for Each Term

a arrived | damaged | delivery | fire [gold {in [of [shipment |silver | truck
P(t|C) | .136].091 045 .045 0457.091{.136|.136{.091 091 |.091

Table 2.20. >, tf(t,d) for Each Document

Dy | Dy | Ds
Y tHtd) [ 7 8 7

Hence, the ranking with this measure is D3, D5, and D,. We now provide
a brief description of two additional smoothing methods. The Jelinek-Mercer
method is a linear interpolation of the maximum likelihood model with the
collection model, using a coefficient A to control the influence of each model.

P/\(ﬂd/ - (] - /\>Pm[(f'td) + /\1)(f|C)
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Table 2.21. tf(t,d) for Each Term

tf(t, d) [ a | arrived | damaged | delivery [ fire | gold | in | of | shipment | silver | truck
D1 1[0 1 0 i 1 {11 0 0
D2 t[!1 0 1 0 10 111 |0 2 t
D3 11 0 0 0 |1 111 |1 0 i
Table 2.22. p,(t|d) for Each Term
pu(tld) |a arrived | damaged | delivery { fire  jgold }in of shipment | silver | truck

Dl 0.141{0.027 [0.114 0.014 10.114(0.127[0.1410.141]0.127 0.027]0.027
D2 0.12810.116 ]0.012 0.103 [0.012]0.025]0.128 | 0.128 | 0.025 0.207]0.116
D3 0.14110.127 {0.014 0.014 [0.014]0.127[0.14110.141]0.127 0.027}0.127

Table 2.23. Final Similarity Measure with Dirichlet Priors

Document Dy D Ds
SC(Q, D;) | 0.0000114 | 0.0002590 | 0.0001728

P(t|C) is the same as given using Dirichlet priors. For A, we choose different
optimal values for different queries. Experiments have shown that a small
value of )\, around 0.1, works well for short queries and a higher value around
0.7 for long queries. The final similarity measure for our example is given in
Table 2.24.

Note, as with all our ranking examples, document two is ranked higher than
documents three which is ranked higher than document one. The absolute dis-
counting method lowers the probability of seen words by subtracting a constant
from their counts. The following equation shows how the discount is incorpo-
rated:

mazx((tf(t,d) — 4),0)
Swtf(td)

where 6 € [0,1]and o = é%ﬁ. |d|,, is the count of unique terms in document d
and |d| is the total number of terms in the document. A key difference from the
Jelinek-Mercer smoothing is that the optimal value of J is frequently around
0.7 according to experimental results. This is true for title queries as well as
long queries. The final similarity coefficient for our example with absolute
discounting is given in Table 2.25.

ps(tld) = +aP(tC)
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We briefly described the use of language models as a recent type of search
strategy. Although it is an old technique from speech recognition, it was only
recently applied to information retrieval. Our discussion is mostly based on
Ponte and Croft’s pioneering work, which models term presence or absence in
the query. We also discussed an alternative multinomial model which treats
a query as a sample drawn from a unigram language model (i.e., a multino-
mial word distribution). In each case, we show how to score a document based
on the likelihood of generating the query using a model estimated from the
document. The retrieval problem is reduced to the problem of estimating a
document language model. A straightforward method of estimating the model
using relative frequency has the obvious problem of assigning a zero probabil-
ity to any word not observed in the document. Smoothing adjusts the estimate
to avoid such a situation. This improves the accuracy of the estimated model.
Many different smoothing methods are possible. The Dirichlet prior method
has thus far performed well.

Table 2.24. Final Similarity Measure with Jelinek-Mercer

Dy D D
SC(Q. Dy) | 0.000314 | 0.000443 | 0.000381

Retrieval with these basic language models can be as efficient as retrieval
using a traditional model such as the vector space model [Zhai and Lafferty,
2001b], and likewise they were shown to be as effective as, or more effec-
tive than, well-tuned traditional models. Perhaps the main advantage of using
language models for retrieval lies in the potential for automatic tuning of pa-
rameters, which is demonstrated in {Zhai and Lafferty, 2002].

Table 2.25. Final Similarity Measure with Absolute Discounting

D, D, D3
SC(Q. D.) | 0.001215 | 0.021716 | 0.005727

Many more complex language models were studied. Some of them attempt
to improve the basic language modeling approach (i.e., the query likelihood
approach) by going beyond the unigram language models by capturing limited
dependencies [Song and Croft, 1999], and by introducing translation models
to capture word relatedness [Berger and Lafferty, 1999]. Some others use lan-
guage models in a different way. For example, in [Lavrenko and Croft, 2001],
language models are incorporated into the classic probabilistic information re-
trieval modei, and a novel method is used for estimating the relevance model
without relevance judgments.
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Recent work focuses on reducing the size of these models [Hiemstra et al.,
2004]. Another recent approach builds language models based on clusters (see
Section 3.2) of documents instead of the entire document collection [Liu and
Croft, 2004].

The basic idea is very similar to pseudorelevance feedback. In other work
[Zhai and Lafferty, 2001b, Zhai and Lafferty, 2001a], both a query model and
a document model are estimated and a model distance function (i.e., Kullback-
Leibler divergence) is used to compute the distance between the two models.
This is very similar to the vector space model, except that the representation
of documents and the query are based on unigram language models. The main
advantage of these alternatives and more sophisticated models is that they can
handle relevance feedback (see Section 3.1) more naturally. Most of these
alternative models were shown to outperform the simple basic query likelihood
scoring method. Development of more accurate and more robust language
models remains an active research area.

2.4 Inference Networks

Inference networks use evidential reasoning to estimate the probability that
a document will be relevant to a query. They model the probabilistic retrieva!
strategy discussed in Section 2.2 and enhance that model to include additional
evidence that a document may be relevant to a query. In this section, we first
give a basic overview of inference networks. We then describe how inference
networks are used for relevance ranking.

2.4.1 Background

The essence of an inference network is to take known relationships and use
them to “infer” other relationships. This dramatically reduces the computa-
tional requirements needed to estimate the probability that an event will occur.

A binary inference network uses events where the event will have either
a value of true or false. A prior probability indicates the likelihood of the
event. Assume we know events A, B, C, D and E all occur with respective
probabilities P(A = true) = a, P(B = true) = b, P(C = true) = ¢,
P(D = true) = d and P(E = true) = e. These events are independent—
that is, the probability that all events will still occur is the same regardless of
whether or not any of the other events occur. More formally, for all possible
combinations of b, ¢, d and e then P(A|b,c,d,e) = P(a). Assume we know
that event F depends on events A, B, C, D and E, and we want to compute the
probability that F occurs given the probability that A, B, C, D and E occur.
Figure 2.6 illustrates this example inference network.

To do this without an inference network, the computation is exponential and
requires consideration of all 25 combinations for the events A, B, C, D and
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E. Using notation given in [Greiff, 1996], let R be the set of all 25 possible
subsets of 1, 2, 3, 4, 5. Let p; indicate the probability that the & event is
true—in our example events 1, 2, 3, 4 and 5 correspond to A, B, C, D and E.
Let P; indicate the state value (either true or false) of the ith event—that is P;
indicates whether or not A is true, P, indicates whether or not B is true, etc.
Finally, the mere existence of an event or combination of events A, B, C, D
or E changes the likelihood that F is true. This probability is called a g and is
defined as:

ar = P(F =truelP,...,Ps)
where i € R — P; is true,
i¢ R— P; is false

To compute P(F' = true), assuming, A, B, C, D and E are independent, the
following equation is used:

P(F =true) = Z R H D H(l - D) 2.9)

RC{1..5} i€R igR

For a simple problem with only five values, we end up with a 32-element com-
putation. The exponential nature of this problem is addressed by inference
networks with naturally occurring intermediaries. This enables the use of par-
tial inferences to obtain a final inference.

Assume we know that events A, B, and C cause event X, and events D and
E cause event Y. We can now use X and Y to infer F. Figure 2.6 illustrates this
simple inference network .

Figure 2.6.  Simple Inference Network

A B C D E
X Y
F

Consider an example where we are trying to predict whether or not the Sala-
manders will win a softball game. Assume this depends on which coaches are
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present and which umpires are present. At the top layer of the network might
be nodes that correspond to a given coach or umpire being present. The Scott,
David, and Catherine nodes (nodes A, B,and C) all correspond to coaches and
the Jim and Manny nodes (nodes D and E) correspond to umpires. Now the
event “good coach is present” (node X) depends on the Scott, David, and
Catherine nodes and the event “good umpire is present” (node Y) depends
on the Jim and Manny nodes. The event “Salamanders win” (node F) clearly
depends on nodes X and Y.

In our example, the presence of an umpire in no way determines whether or
not another umpire attends, but it certainly impacts whether or not the umpires
are “friendly” to the Salamanders. Similarly, the presence of a given coach
does not impact the presence of other coaches, but it does impact whether or
not the whole coaching staff is present. Also, the presence or absence of a
coach has no impact on whether or not the umpires will be favorable.

To compute F, equation 2.9 can be used, or we can use an inference network
to take advantage of the logical groupings inherent in the events X and Y. First,
we compute P(X = true) using the three parents— A, B, and C — this
requires 2% computations. The impact of the parent nodes on the child node
with the variable « and a binary subscript that indicates the likelihood that the
child node is true, given various combinations of parent nodes being true. For
example, ar11; indicates the probability that the child node is true given that all
three parents are true. Computing P(X = true) we obtain:

P(X =true) = aimabc+ a110eb(1 — ¢) + ajpia(l — b)c +
aigoa(l = b)(1 —¢) + aon1(l — a)be +
ao10(1 — a)b(1 — ¢) + agor(1 — a)(1 — bje +
agoo(l —a)(1 —b)(1 ~¢)

and now we compute P(Y = true) using the two parents D, E:

P(Y = true) = ajde + alod(l - 6) + a01(1 - d)e + a()()(l - d)(l — 8)

Once the prior probabilities for X and Y are known, we compute the probability
that F is true as: ‘

P(F = true) = ay1zy + a10z(l —y) + any(l - 1) + ago(l — z)(1 ~y)

To compute F, it took eight additions for X, four for Y, and finally four for
E. Therefore, we now require only sixteen instead of the thirty-two required
without the inference network. The key is that F is independent of A, B, C, D
and E given X, Y or:
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P(F = truela,b,c,d, e, z,y) = P(F = true|z,y)

Once the initial values of the top layer of the inference network are assigned
(these are referred to as prior probabilities), a node on the network is instanti-
ated and all of its links are followed to nodes farther down the network. These
nodes are then activated. At this point, the node that is activated is able to com-
pute the belief that the node is true or false. The belief is computed based on
the belief that all of its parent nodes are true or false. At this point, we have as-
sumed that all parents contributed equally to the belief that a node was present.
Link matrices indicate the strength by which parents (either by themselves or
in conjunction with other parents) affect children in the inference network.

2.4.2 Link Matrices

Another capability provided by the inference network is the ability to in-
clude the dependence of a child on the parents. Suppose we know that a partic-
ular umpire, Manny, is much more friendly to the Salamanders than any other
umpire. Hence, the contribution of D, E to the value of Y may not be equal.

The link matrix contains an entry for each of the 2" combinations of parents
and (for a binary inference network in which nodes are either true or false)
will contain only two rows.

In our example, the link matrix for the node Y that represents the impact of
umpires D and E on Y is given as:

DE | DE | DE | DE
Ytue | 09 08 02 ] 005
Y false | 0.1 0.2 0.8 | 0.95

This matrix indicates that the presence of the friendly umpire Manny (D) cou-
pled with the absence of Jim (E) results in an eighty percent contribution to the
belief that we have friendly umpires for the game. We use the notation L;(Y")
to indicate the value of the i entry in the link matrix to identify whether or
not Y is true and L;(Y") to indicate the value to determine whether or not Y is
false.

The link matrix entries are included as an additional element in the compu-
tation given above. The new equation to compute the belief that a given node

N with n parents using the previously used set R becomes:

P(N = true) = Z Li(N) II pi [T(1 - p)

RC{1....n} iER  i¢R

The fink matrix for p parents contains 2P entries. Again, the link matrix mea-
sure- she contribution of individual parents to a given inference. The link ma-
trix -t be selected such that a closed form computation is possible. The sim-
ples: inatrix, the L 4n ) for an arbitrary node N is of the form [Turtle, 1991]:
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Pooo | Poor | Poto | Poir | Pioo | Pro1 | Pio | Pin
N true 0 0 0 0 0 0 0 1

The entries are given in binary such that a 1 or 0 is given for each of the pos-
sible p parents (p=3 in this case). The computation results in zeros for all com-
binations of parents except when all p parents exist. The value of P(N=true)
will be (p1)(p2)(p3) where p; indicates the probability that the parent p; is
true. Only a single element must be summed to obtain the final result instead
of the worst case of 2. Other closed form link matrices exist that essentially
average the prior probabilities of parents.

To give an example with our existing inference network, assume there is a
seventy percent chance A will attend, and a sixty percent chance B and C will
attend (P(A) =0.7, P(B) =0.6, P(C) = 0.6). For umpires, assume P(D) = 0.8 and
P(E) = 0.4. The links from A, B, C, D and E are followed and the probability
that X and Y are true can now be computed. To compute P(X = true), we
need the link matrix for X. Let’s assume the link matrix results ina closed form
average of all parent probabilities

Y1 pi

n

P(X = true) = Qj_iﬂ_;’_iQE = 0.633

Now to compute the probability for Y, the link matrix given above is used to
obtain:

P(Y = true) = Lu(Y)de+ Lio(Y)d(1 — ) + L (Y)(1 — d)e +
Loo(Y)(1 —d)(1 —¢)

P(Y = true) = (0.9)(0.8)(0.4) + (0.8)(0.8)(0.6) + (0.2)(0.2)(0.4) +
(0.05)(0.2)(0.6)

P(Y = true) = 0.288 + 0.384 +- 0.016 + 0.006 = 0.694

Now we have the belief that X and Y are true, assume we use the unweighted
sum link matrix. This is a closed form link matrix that results in a simple
average of the parent probabilities to compute the belief in F. The final value
for Fis:
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P(F = true) = w = 0.6635

In this case, we had only three elements to sum to compute X, four to compute
Y, and two to compute F. If we did not have a closed form link matrix we would
have had 23 for X, 22 for Y, and 22 for F or 16 elements—substantially less
than the 2° required without an inference network.

2.4.3  Relevance Ranking

Turtle’s Ph.D. thesis is the seminal work on the use of inference networks
for information retrieval [Turtle, 1991]. The documents are represented as
nodes on the inference network , and a link exists from each document to each
term in the document. When a document is instantiated, all of the term nodes
linked to the document are instantiated. A simple three-layered approach then
connects the term nodes directly to query nodes. This three-layered network is
illustrated in Figure 2.7. A link exists between a term node and a query node for
each term in the query. Note that this is the most simplistic form of inference
network for information retrieval. The three-layered approach consists of a
document layer, a term layer, and a query layer. Note that the basic algorithm
will work if a layer that contains generalizations of terms or concepts exists.
This layer could sit between the term layer and the query layer. Links from
a term to a concept could exist based on semantic processing or the use of a
thesaurus (see Sections 3.6 and 3.7). Using a concept layer gives the inference
network resilience to the matching problem because terms in the query need
not directly match terms in the document; only the concepts must match.

An example of an inference network with actual nodes and links is given in
Figure 2.8. A query and three documents are given along with the correspond-
ing network. Links exist from the document layer to the term layer for each
occurrence of a term in a document.

For our discussion, we focus on a three-layered inference network. Process-
ing begins when a document is instantiated. By doing this, we are indicating
that we believe document one (D7) was observed. This instantiates all term
nodes in Dy. We only instantiate the network with a single document at a time.
Hence, the closed form for the link matrix for this layer will equal the weight
for which a term might exist in a document. Typically, some close variant on
tf — idf is used for this weight.

Subsequently, the process continues throughout the network. All links em-
anate from the term nodes just activated and are instantiated, and a query node
is activated. The query node then computes the belief in the query given Dy,
This is used as the similarity coefficient for ;. The process continues until
all documents are instantiated.
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Figure 2.7. Document-Term-Query Inference Network

Document Network

Concept / Term Network

t, ty ts ... / Cy, Cai Cs ...

Query Network

Gy, d2, Q3. ---

2.4.4 Inference Network Example

We now use an inference network to compute a similarity coefficient for the
documents in our example:

Q: “gold silver truck”

D;: “Shipment of gold damaged in a fire.”

Ds: “Delivery of silver arrived in a silver truck.”
Ds: “Shipment of gold arrived in a truck.”

We need to evaluate our belief in the query given the evidence of a document,
D;. Assuming that our belief is proportional to the frequency within the doc-
ument and inversely proportional to the frequency within the collection leads
us to consider the term frequency, tf, and inverse document frequency, idf .
However, both are normalized to the interval [0,1] by dividing ¢ f by the maxi-
mum term frequency for the document, and idf by the maximum possible idf
(see Table 2.26).

In our three document collection, each term appears 1, 2 or 3 times. The
total size of the collection is 3, so for:
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Figure 2.8. Inference Network

Query (Q) - D, D, D,
Document
Layer

Concept
Layer

Query
Layer

Table 2.26.  Initial Values for Example Collection

a__ | arrived | damaged | delivery | fire | gold | in | of shipment | silver | truck
idf |10 0.41 .10 1.10 1.10 1041 | 0 0 0.41 041 | 041
nidf |0 037 1 1 1 03710 [0 |037 0.37 1037
Dy |1 0 i 0 { I | i I 0 0
Dy 105105 0 0.5 0 0 05]05(0 1 0.5
D3 11 1 0 0 0 I 1 i 1 0 I

tf=1,idf=In3 = 1.10
tf=2,idf=In3 =0.41
tf=3,idf=In3 =0

Each term appears in a document either once or not at all, with the single
exception of silver which appears twice in Ds. For each combination of term
and document, we evaluate P,; = P(r; = true|d; = true). Turtle used the
formula P;; = 0.54-0.5(nt f;;)(nidf;) to compute the belief in a given term for
a particular document. Instantiating a document provides equal support for all
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members of the assigned term nodes. Any node for which there is no support
(no documents instantiated) has belief equal to zero.
For each term, a link matrix is constructed that describes the support by its
parent nodes. For the concepts in the query, the link matrices are given below:
The link matrix for gold is:

DiDs | DiDs | DiDs
False i 0.315 0.315
True 0 0.685 0.685

The matrix indicates the belief of falsehood (first row) or truth (second row)
given the conditions described in the column. When we instantiate a document,
it is taken as true. Only one document is instantiated at a time. The number in
the table is the value for P;j, or the belief that term 1 is true given document j
has been instantiated.

If D3 is assigned a value of true, the belief is computed as:

P, = 0.5 + 0.5(nt fi;) (nidf;) = 0.5+ 0.5(0.369)(1) = 0.685

This is found in the link matrix when Dy is true. In this case, the link matrix
has a closed form. Hence, it need not be stored or computed in advance. The
matrix only accounts for three possibilities: both documents are false, D; is
assigned a value of true and not D3, D3 is assigned a value of true and not D;.
Since gold does not appear in document two, there is no need to consider the
belief when D, is assigned a value of true as there is no link from Dy to the
node that represents the term gold. Also, since documents are assigned a value
of true one at a time, there is never a need to consider a case when D and D3
are true at the same time.

Similarly, the link matrix for silver can be constructed. Silver only appears
in document D5 so the only case to consider is whether or not D, is assigned
a value of true. The link matrix computes:

Pl‘j =05+ O.S(ntfij)(nidfi) =0.5+ 0.5(0.369)(1) = 0.685

Similarly, the link matrix for truck is constructed. Truck has two parents Do
and D3.

D:Ds | D2Ds | D:Ds
False 0.315 0.408
True 0 0.685 0.592

—
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For D, true and Dj false, we have:

Pyj = 0.5+ 0.5(nt fi;)(nidf;) = 0.5 + 0.5(0.5)(0.369) = 0.592

We have now described all of the link matrices used to compute the belief
in a term given the instantiation of a document. Now a link matrix for a query
node must be developed.

There is quite a bit of freedom in choosing this matrix. The user interface
might allow users to indicate that some terms are more important than others. If
that is the case, the link matrix for the query node can be weighted accordingly.
One simple matrix is given in Turtle’s thesis [Turtle, 1991]. Using g, s, and ¢
to represent the terms gold, silver, and truck, it is of the form:

gst | g s | gs t] gt| st gst
False | 09 107 [07]05]105[03 103101
True | 0.1 [03[03]05([05]071071009

The rationale for this matrix is that gold and silver are equal in value and truck
is more important. Also, even if no terms are present, there is some small
belief (0.1) that the document is relevant. Similarly, if all terms are present,
there is some doubt (0.1). Finally, belief values are included for the presence
of multiple terms.

We now instantiate D; which means Bel(gold)—the belief that gold is true
given document D;—is 0.685, Bel(truck) = 0.5, and Bel(silver) = 0.5. Note
“Bel(z)” represents “the belief in z” for this example.

At this point, all term nodes have been instantiated so the query node can
now be instantiated.

Bel(Q | D) =0.1(0.315)(1)(1) + 0.3(0.685)(1)(1) + 0.3(0.315)(0)(1) +
0.5(0.685)(0)(1) + 0.5(0.315)(1)(0) + 0.7(0.685)(1)(0) +
0.7(0.315)(0)(0) + 0.9(0.685)(0)(0) = 0.031 + 0.206 = 0.237.

This directly follows from the equation given in our prior examples using the
link matrix entries L;(Q).

Instantiating D, gives Bel(gold) = 0, Bel(silver) = 0.685, and Bel(truck) =
0.592. The belief in D5 is computed as:

Bel(Q | D7) =(0.1)(1)(0.315)(0.408) + (0.3)(0)(0.315)(0.408) +
(0.3)(1)(0.685)(0.408) + (0.5)(0)(0.685)(0.408) +
(0.5)(1)(0.315)(0.592) + (0.7)(0)(0.315)(0.592) +
(0.7)(1)(0.685)(0.592) + (0.9)(0)(0.685)(0.592) =
0.013 +0.084 + 0.093 + 0.283 = 0.473.
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Assigning Ds a value of true gives Bel(gold) = 0.685, Bel(silver) = 0, Bel(truck)
= 0.685. The belief in D3 is computed as:

Bel(Q | D3) = (0.1)(0.315)(1)(0.315) + (0.3)(0.685)(1)(0.315) +
(0.3)(0.315)(0)(0.315) + (0.5)(0.685)(0)(0.315) +
(0.5)(0.315)(1)(0.685) + (0.7)(0.685)(1)(0.685) +
(0.7)(0.315)(0)(0.685) + (0.9)(0.685)(0)(0.685) =
0.01 +0.065 +0.108 + 0.328 = 0.511.

In the link matrices throughout this example, we assume that each parent has
an equal contribution to the child probability. The assumption is that if two par-
ents exist, regardless of which parents, the child probability is greater. Recent
work has described the potential to generate closed forms for link matrices in
which the presence or absence of each parent is not equal [Greiff et al., 1997].
Only the surface has been scratched with regard to the topology of inference
networks for relevance ranking. Potential exists to group common subdocu-
ments in the inference network or to group sets of documents or clusters within
the inference network. Also, different representations for the same document
can be used. To our knowledge, very little was done in this area.

275 Extended Boolean Retrieval

Conventional Boolean retrieval does not lend itself well to relevance rank-
ing because documents either satisfy the Boolean request or do not satisfy the
Boolean request. All documents that satisfy the request are retrieved (typically
in chronological order), but no estimate as to their relevance to the query is
computed.

An approach to extend Boolean retrieval to allow for relevance ranking is
given in [Fox, 1983a] and a thorough description of the foundation for this
approach is given in [Salton, 1989]. The basic idea is to assign term weights
to each of the terms in the query and to the terms in the document. Instead of
simply finding a set of terms, the weights of the terms are incorporated into a
document ranking. Consider a query that requests (t; OR t9) that is matched
with a document that contains t; with a weight of w; and t2 with a weight of
wo.

If both w; and wo are equal to one, a document that contains both of these
terms is given the highest possible ranking. A document that contains neither
of the terms is given the lowest possible ranking. A simple means of computing
a measure of relevance is to compute the Euclidean distance from the point
(wy,ws) to the origin. Hence, for a document that contains terms t; and to
with weights w; and we, the similarity coefficient could be computed as:
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SC(Q,di) = \/(w1)? + (wo)?
For weights of 0.5 and 0.5, the SC would be:

SC(Q,d;) = V0.52 + 0.52 = V0.5 = 0.707

The highest value of SC occurs when w; and w are each equal to one. In
this case we obtain SC(Q, D;) = V2 = 1.414. If we want the similarity
coefficient to scale between 0 and 1, a normalization of /2 is added. The SC

becomes:
V(w1)? + (ws)?
V2

This coefficient assumes we are starting with a query that contains the Boolean
OR: (t; Vta). It is straightforward to extend the computation to include an
AND. Instead of measuring the distance to the origin, the distance to the point
(1,1) is measured. The closer a query is to the point (1,1) the more likely it will
be to satisfy the AND request. More formally:

VI—w)2+ (1= we)?
V2

2.5.1 Extensions to Include Query Weights

Consider again the same document that contains query terms ¢, and ¢» with
weights w; and wy. Previously, we assumed the query was simply a Boolean
request of the form (t; OR ¢,) or (t; AND t2). We now add the weights q; and
q2 to the query. The new similarity coefficient that includes these weights is

computed as:
[02002 1 12,2
L V4w +giw;
SC(Quy\ g ) = =
97 43

SC(Qtl v ta? dl) =

SC(Qu g1y i) =1 -

SC(Q d‘) -1 (\/‘112(1 — w1)2 + q%(l _ w2)2)
q}/\q? m

2.5.2  Extending for Arbitrary Numbers of Terms

For Euclidean distances in two-dimensional space, a 2-norm is used. To
compute the distance from the origin in multi-dimensional space. an L,, vec-
tor norm is used. The parameter, ». allows for variations on the amount of
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importance the weights hold in evaluating the measure of relevance. The new
similarity coefficient for a query Q with terms ¢; and t; with weights ¢; and g;
and a document D; with the same terms having weights of w; and wj is defined
as:

a8, &
Sy

wf]%

Wy +
SC(D, Qg \gy) = F—T

=

| F(—ud)+ g1 -uD)]?
sim(D, Qg Agy)) = 1~ [ & +q§’ ] }

At p equal to one, this is equivalent to a vector space dot product. At p equal
to infinity, this reduces to a normal Boolean system where term weights are
not included. Initial tests found some improvement with the extended Boolean
indexing over vector space (i.e., p = 2), but these tests were only done for
small data collections and were computationally more expensive than the vec-
tor space model.

253 Automatic Insertion of Boolean Logic

Each of the retrieval strategies we have addressed do not require users to
identify complex Boolean requests. Hence, with the use of OR, a query con-
sisting only of terms can be used. Weights can be automatically assigned (us-
ing something like tf-idf) and documents can then be ranked by inserting OR’s
between each of the terms. The conventional vector space model, implicitly
computes a ranking that is essentially an OR of the document terms. Any doc-
ument that contains at least one of the terms in the query is ranked with a score
greater than 0.

Conversely, a more sophisticated algorithm takes a sequence of terms and
automatically generates ANDs and ORs to place between the terms [Fox, 1983a).
The algorithm estimates the size of a retrieval set based on a worst-case sum
of the document frequencies. If term ¢, appears in 50 documents and term to
appears in 100 documents, we estimate that the query will retrieve 150 docu-
ments. This will only happen if t; and ¢, never co-occur in a document.

Using the worst-case sum, the terms in the query are ranked by document
frequency. The term with the highest frequency is placed into a REMOVED
set. This is done for the two highest frequency terms. Terms from the RE-
MOVED set are then combined into pairs, and the pair with the lowest esti-
mated retrieval set is added. The process continues until the size of the retrieval
set is below the requested threshold.
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2.6 Latent Semantic Indexing

Matrix computation is used as a basis for information retrieval in the re-
trieval strategy called Latent Semantic Indexing [Deerwester et al., 1990]. The
premise is that more conventional retrieval strategies (i.e., vector space, prob-
abilistic and extended Boolean) all have problems because they match directly
on keywords. Since the same concept can be described using many different
keywords, this type of matching is prone to failure. The authors cite a study
in which two people used the same word for the same concept only twenty
percent of the time.

Searching for something that is closer to representing the underlying se-
mantics of a document is not a new goal. Canonical forms were proposed for
natural language processing since the early 1970’s [Winograd, 1983, Schank,
1975]. Applied here, the idea is not to find a canonical knowledge represen-
tation, but to use matrix computation, in particular Singular Value Decompo-
sition (SVD). This filters out the noise found in a document, such that two
documents that have the same semantics (whether or not they have matching
terms) will be located close to one another in a multi-dimensional space.

The process is relatively straightforward. A term-document matrix A is con-
structed such that location (4, 5) indicates the number of times term i appears
in document j. A SVD of this matrix results in matrices U Y~ V7 such that >
is a diagonal matrix. A is a matrix that represents each term in a row. Each
column of A represents documents. The values in 2~ are referred to as the
singular values. The singular values can then be sorted by magnitude and the
top k values are selected as a means of developing a “latent semantic" rep-
resentation of the A matrix. The remaining singular values are then set to 0.
Only the first & columns are kept in Uy; only the first k rows are recorded in
VI After setting the results to 0, a new A’ matrix is generated to approximate
A=UX VT,

Comparison of two terms is done via an inner product of the two correspond-
ing rows in Uj. Comparison of two documents is done as an inner product of
two corresponding rows in VkT.

A query-document similarity coefficient treats the query as a document and
computes the SVD. However, the SVD is computationally expensive; so, it is
not recommended that this be done as a solution. Techniques that approxi-
mate X and avoid the overhead of the SVD exist. For an infrequently updated
document collection, it is often pragmatic to periodically compute the SVD.

2.6.1 LSI Example

To demonstrate Latent Semaiuic Indexing, we once again use our previous
query and document example:
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Q: “gold silver truck”

D; “Shipment of gold damaged in a fire.”

Do: “Delivery of silver arrived in a silver truck.”
D3: “Shipment of gold arrived in a truck.”

The A matrix is obtained from the numeric columns in the term-document
table given below:

D, | D2 | D3
a 1 1 1
arrived 0 | 1
damaged 1 0 0
delivery 0 ] 0
fire 1 0 0
gold 1 0 1
in 1 1 |
of 1 1 I
shipment 1 0 1
silver 0 2 0
truck 0 1 1

This step computes the singular value decompositions (SVD) on A. This re-
sults in an expression of A as the product of US> VT. In our example, A is
equal to the product of:

—0.4201 0.0748 —0.0460

—0.2995 —0.2001 0.4078

—0.1206 (1.2749 —0.4538

—0.1576 —0.3046 —0.2006

—0.1206 0.2749 —~0(.4538 4.0989 O [} [ -0.4945 —0.6458 —-0.5817
—0.2626 0.3794 0.1547 8} 2.3616 0 0.6492 —0.7194 —-0.2469
—0.4201 0.0748 —0.0460 [} ] 1.2737 —0.5780 —0.2556 0.7750
—-0.4201 0.0748 —0.0460

—0.2626 0.3794 0.1547

~0.3151 —0.6093 ~0.4013

—0.2995 —0.2001 0.4078

However, it is not the intent to reproduce A exactly. What is desired, is to
find the best rank k approximation of A. We only want the largest k singular
values (k < 3). The choice of k and the number of singular values in ¥ to
use is somewhat arbitrary. For our example, we choose k = 2. We now have
Ay = Uy ¥, V. Essentially, we take only the first two columns of U and the
first twc rows of 3 and vT.
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This new product is:

[' —0.4201 0.0748 ]
—0.2995 -0.2001
~0.1206 0.2749
-0.1576 —0.3046

:8’;‘222 g'gggi [4.0989 0H—0.4945 -0.6458 —0.5817
04201 0.0748 0 2.3616 0.6492 —0.7194 —0.2469

—0.4201 0.0748
-0.2626 0.3794
-0.3151 -0.6093
| —0.2995 -0.2001 J

To obtain a k x 1 dimensional array, we now incorporate the query. The query
vector g7 is constructed in the same manner as the original A matrix. The
query vector is now mapped into a 2-space by the transformation ¢7'U, 2o l

ro1” [ —0.4201  0.0748 ]
0 —0.2995 —0.2001
0 —0.1206  0.2749
0 —0.1576 —-0.3046
0 -0.1206  0.2749
1 -0.2626  0.3794 [ 0'2448 0 4232 J =[ -0.2140 -0.1821 ]
0 —-0.4201  0.0748 :
0 —-0.4201  0.0748
0 —0.2626  0.3794
1 —-0.3151 —0.6093
[ 1] [ -0.2995 —0.2001 J

We could use the same transformation to map our document vectors into 2-
space, but the rows of V5 contain the co-ordinates of the documents. Therefore:

Dy = (-0.4945 -0.0688)
Dy =(-0.6458 0.9417)
D3 =(-0.5817 1.2976)

Finally, we are ready to compute our relevance value using the cosine similarity
coefficient. This yields the following:
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(~0.2140)(—0.4945) + (—0.1821)(0.6492)

D) = = —0.054
' /(-0.2140)2 + (—0.1821)2)/(—0.4945)2 + (0.6492)?) 0.0541
D (—0.2140)(—0.6458) + (—0.1821)(—0.7194)
, = = 0.9910
/(=0.2140)% + (—0.1821)2),/(~0.6458)* + (~0.7194)?)
Ds (—0.2140)(—0.5817) + (—0.1821)(~0.2469) — 0.9543

- V/(—0.2140)% + (—0.1821)2)/(—0.5817) + (-0.2469)?)

2.6.2 Choosing a Good Value of k

The value k is the number of columns kept after the SVD, and it is deter-
mined via experimentation. Using the MED database of only 1,033 documents
and thirty queries, the average precision over nine levels of recall was plotted
for different values of k. Starting at twenty, the precision increases dramati-
cally up to values of around 100, and then it starts to level off.

2.6.3 Comparison to Other Retrieval Strategies

A comparison is given between Latent Semantic Indexing (LSI) with a fac-
tor of 100 to both the basic tf-idf vector space retrieval strategy and the ex-
tended Boolean retrieval strategy. For the MED collection, LSI had thirteen
percent higher average precision than both strategies. For the CISI collection
of scientific abstracts, LSI did not have higher precision. Upon review, the au-
thors found that the term selection for the LSI and ff-idf experiments was very
different. The LSI approach did not use stemming or stop words. When the
same terms were used for both methods, LSI was comparable to tf-idf. More
work was done with LSI on the TIPSTER collection [Dumais, 1994]. In this
work, LSI was shown to perform slightly better than the conventional vector
space model, yielding a 0.24 average precision as compared to 0.22 average
precision.

2.6.4 Potential Extensions

LSI is relatively straightforward, and few variations are described in the
literature. LSI focuses on the need for a semantic representation of documents
that is resilient to the fact that many terms in a query can describe a relevant
document, but not actually be present in the document.

2.6.5 Run-Time Performance

Run-time performance of the LSI approach is clearly a serious concern.
With the vector space or probabilistic retrieval strategy, an inverted index is
used to quickly compute the similarity coefficient. Each document in the col-
lection does not need to be examined (unless a term in the query appears in
every document). With LSI, an inverted index is not possible as the query is
represented as just another document and must, therefore, be compared with
all other documents.
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Also, the SVD itself is computationally expensive. We note that several par-
allel algorithms were developed specifically for the computation of the SVD
given here [Berry, 1992]. For a document collection with N documents and a
singular value matrix 3 of rank k, an O(N2k3) algorithm is available. A de-
tailed comparison of several parallel implementations for information retrieval
using LSI is given in [Letsche and Berry, 1997].

2.7 Neural Networks

Neural networks consist of nodes and links. Essentially, nodes are com-
posed of output values and input values. The output values, when activated,
are then passed along links to other nodes. The links are weighted because the
value passed along the link is the product of the sending nodes output and the
link weight. An input value of a node is computed as the sum of all incoming
weights. Neural networks can be constructed in layers such that all the data
the network receives are activated in phases, and where an entire layer sends
data to the next layer in a single phase. Algorithms that attempt to learn based
on a training set, modify the weights of the links in response to training data.
Initial work with neural networks to implement information retrieval was done
in [Belew, 1989]. This work used only bibliographic citations, but it illustrates
the basic layered approach used by later efforts.

For ad hoc query retrieval, neural nets were used to implement vector space
retrieval and probabilistic retrieval. Additionally, relevance feedback can be
implemented with neural networks.

Using a neural network to implement vector space retrieval can, at first, ap-
pear to be of limited interest. As we have discussed (see Section 2.1), the
model can be implemented without the use of neural networks. However, neu-
ral networks provide a learning capability in which the network can be changed
based on relevance information. In this regard, the network adapts or learns
about user preferences during a session with an end-user.

Section 2.7.1 describes a vector space implementation with a neural net-
work. Section 2.7.2 describes implementation of relevance feedback. Section
2.7.3 describes a learning algorithm that can be used with a neural network
for information retrieval. Subsequently, we describe a probabilistic implemen-
tation in Section 2.7.4. Section 2.7.5 describes how term components can be
used within neural networks. Section 2.7.6 uses weights derived from those
used for vector space and probabilistic models.

2.7.1  Vector Space

To use a neural network to implement the vector space model, we establish a
network of three types of nodes: QUERY, TERM, and DOCUMENT [Crouch
et al.,, 1994]. The links between the nodes are defined as query-term links and
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document-term links. A link between a query and a term indicates the term
appears in the query. The weight of the link is computed as tf-idf for the term.
Document-term links appear for each term that occurs in a given document.
Again, a tf-idf weight can be used.

A feed-forward network works by activating a given node. A node is active
when its output exceeds a given threshold. To begin, a query node is activated
by setting its output value to one. All of its links are activated and subsequently
new input weights for the TERM nodes are obtained. The link sends a value
of (tf)(idf)(1) since it transmits the product of the link weight with the value
sent by the transmitting node (a one in this case). The weight, tf-idf in this case,
is received by the term node. A receiving node computes its weight as the sum
of all incoming links. For a term node with only one activated query, one link
will be activated. The TERM node’s output value will be a tf-idf weight. In the
next phase, the TERM nodes are activated and all of the links that connect to a
document node are activated. The DOCUMENT node contains the sum of all
of the weights associated with each term in the document. For a collection with
¢ terms, the DOCUMENT node associated with document 4 will now have the
value:

t .
DOC; = _(tfi;)(idf;)
=1

The DOCUMENT node now has a weight associated with it that measures the
relevance of the document to a given query. It can easily be seen that this
weight is equivalent to a simple dot product similarity coefficient as given in
Section 2.1.

2.7.2 Relevance Feedback

To implement relevance feedback, a new set of links are added to the net-
work. The new links connect DOCUMENT nodes back to TERM nodes. The
document-term link is activated after the initial retrieval. Figure 2.9 illustrates
this process along with a sample query and three documents. Links are fed into
a newly defined input site on the TERM node, and their input is added to the
value found in the existing query site of the TERM node. Without relevance
feedback, the network operates in two phases. The first phase sends informa-
tion from the QUERY nodes to the TERM nodes. The second phase sends
information from the TERM nodes to the DOCUMENT nodes.

If relevance feedback is used, processing continues. The third phase sends
information from the DOCUMENT nodes to the TERM nodes for the docu-
ments that are deemed relevant. The relevant documents are identified man-
ually, or the top n documents can be deemed relevant. Finally, in the fourth
phase, the TERM nodes are activated, if they exceed a threshold parameter.
The TERM-DOCUMENT links are used to send the newly defined weights
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Figure 2.9, Neural Network with Feedback

Query Term Document
Layer Layer Layer

Activation: —»
Feedback: <g----

obtained during the relevance feedback phase to the DOCUMENT nodes. At
this point, the DOCUMENT nodes are scored with a value that indicates the
effect of a single iteration of relevance feedback.

Initial experiments with the MEDLARS and CACM collection found an im-
provement of up to fifteen percent in average precision for MEDLARS and a
degradation of eleven percent for CACM. As mentioned before, these collec-
tions are very small. Using a residual evaluation, in which documents found
before relevance feedback are no longer considered, the average precision for
CACM reached twenty-one percent and MEDLARS was as high as Sixty per-
cent.

2.7.3  Learning Modifications

The links between the terms and documents can be modified so that future
queries can take advantage of relevance information. Typical vector space rel-
evance feedback uses relevance information to adjust the score of an individual
query. A subsequent query is viewed as a brand new event, and no knowledge
from any prior relevance assessments is incorporated.

To incorporate relevance information into subsequent queries, the document
nodes add a new signal called the learning signal. This is set to one if the
user judges the document as relevant, zero if it is not Judged, and negative
one if it is judged as non-relevant. Term-document links are then adjusted
based on the difference between the user assessment and the existing document
weight. Documents with high weights that are deemed relevant do not result
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in much change to the network. A document weighted 0.95 will have a § of
1 —0.95 = 0.05, so each of its term-document links will be increased by only
five percent. A document with a low weight that is deemed relevant will result
in a much higher adjustment to the network.

Results of incorporating the learning weight were not substantially different
than simple relevance feedback, but the potential for using results of feedback
sets this approach apart from traditional vector space relevance ranking.

2.7.4 Probabilistic Retrieval

Standard probabilistic retrieval based on neural networks is described in
[Crestani, 1994]. The standard term weight given in Sparck Jones and de-
scribed in more detail in Section 2.2.1 is used. This weight is:

log ri(N —n; — R+r;)
(R—=ri)(n: — i)
where:
N = number of documents
R = relevant documents
r; = number of relevant documents that contain term ¢
n; = number of documents (relevant or non-relevant) that contain term ¢

The weight is a ratio of how often a term appears in relevant documents to
the number of times it occurs in the whole collection. A term that is infrequent
in the collection, but appears in most of the relevant documents is given a high
weight. These weights are used as the weight of the query-term links, the term-
document links, and essentially replaces the if-idf weights used in the vector
space model. The sum operation to combine links takes place as before, and
results in a value that is very similar to the weight computed by the standard
probabilistic retrieval model.

The training data are used, and a standard back propagation learning algo-
rithm is used to re-compute the weights. Once training is complete, the top
ten terms are computed using the neural network, and the query is modified to
include these terms.

Using the Cranfield collection, the neural network-based algorithm per-
formed consistently worse than the News Retrieval Tool, an existing proba-
bilistic relevance feedback system {Sanderson and Rijsbergen, 1991]. The au-
thors cite the relative lack of training data as one problem. Also, the authors
note that the large number of links in the neural network makes the network
cumbersome and consumes a substantial computational resource.
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2.7.5 Component Based Probabilistic Retrieval

A component-based retrieval model using neural networks is given in [Kwok,
1989]. A three-layered network is used as before, but the weights are different.
Query-term links for query a are assigned a weight of wy, = gLﬂf, where g
is the frequency of term k in query a. Document term links for document ¢ are
assigned wy; = %’k, where d;; indicates the term frequency of term & in docu-
ment . Lg is the number of terms in the query and L; is the number of terms in
document ¢. Term-query links are weighted w,, and document-term links are
weighted w;;. The query-focused measure is obtained by activating document
nodes and feeding forward to the query. The document—focused measure is
obtained by activating the query nodes and feeding forward to the documents.

Kwok extended his initial work with neural networks in [Kwok, 1995]. The
basic approach is given along with new learning algorithms that make it pos-
sible to modify the weights inside of the neural network based on a training
collection. Learning algorithms that added new terms to the query based on
relevance feedback were given. Other algorithms did not require any additional
query terms and simply modified the weights. The algorithms were tested on
a larger corpus using more than three hundred megabytes of the Wall Street
Journal portion of the TIPSTER collection. Kwok goes on to give learning
algorithms based on no training collections, training based on relevance infor-
mation, and query expansion.

Without a training collection, some initial data estimates can be assigned
a constant (see Section 2.2.4). Training with relevance information proceeds
using document-term links and term-document links as described in Section
2.7.2.

2.7.6  Combined Weights

A similar input-term-document-output layered neural network was used in
[Boughanem and Soule-Depuy, 1997]. To our knowledge, this is the first report
of the use of a neural network on a reasonably large document collection.

The key weight, which is used to represent the occurrence of a term in a
document, is based on the pivoted document length normalization developed
for the vector space model and the document length normalization developed
for the probabilistic model (See Section 2.1.2 and Section 2.2.3).

The weight of the link from term ¢; to document D) is:

(1+log(tfi;)) * (h1 + ho x log L))
h3 + h4 * ‘-2-

Wij =
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where:
tfij = weightof term ¢ in document j
dfi = number of documents that contains term
d; = lengthin terms (not included stop terms) of document j
A = average document length

Tuning parameters, hi, ha, h3, and hy, were obtained by training on the TREC-
5 collection. Relevance feedback was also incorporated with the top twelve
documents assumed relevant and used to supply additional terms. Documents
500-1000 were assumed non-relevant. An average precision of 0.1772 was
observed on the TREC-6 data, placing this effort among the top performers at
TREC-6.

2.7.7 Document Clustering

A neural network algorithm for document clustering is given in [Macleod
and Robertson, 1991]. The algorithm performs comparably to sequential clus-
tering algorithms that are all hierarchical in nature. On a parallel machine the
neural algorithm can perform substantially faster since the hierarchical algo-
rithms are all inherently sequential.

The algorithm works by first associating a node in the network for each
cluster. Each node then computes (in parallel) a measure of similarity between
the existing document and the centroid that represents the cluster associated
with the node. First, a similarity coefficient is computed between the incoming
document X and the existing cluster centroids. The input nodes of the neural
network correspond to each cluster. If the similarity coefficient, sy, is higher
than a threshold, s1444, the input node is activated. It then loops back to itself
after a small recalculation to participate in a competition to add X to the cluster.
Nodes that are not sufficiently close enough to the incoming document are
deactivated.

A new pass then occurs for all of the nodes that won the first round, and the
similarity coefficient is computed again. The process continues until only one
cluster passes the threshold. At this point, a different similarity coefficient is
computed, s, to ensure the winning cluster is reasonably close to the incoming
document. If it is close enough, it is added to the cluster, and the centroid for
the cluster is updated. Otherwise, a new cluster is formed with the incoming
document.

The algorithm performed comparably to the single linkage, complete link-
age, group average, and Ward’s method which are described in Section 3.2.
Given that this algorithm is non-hierarchical and can be implemented in par-
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allel, it can be more practical than its computationally expensive hierarchical
counterparts.

2.8  Genetic Algorithms

Genetic algorithms are based on principles of evolution and heredity. An
overview of genetic algorithms used for information retrieval is given in [Chen,
1995]. Chen reviews the following steps for genetic algorithms:

= Initialize Population
= Loop

— Evaluation

- Selection

- Reproduction
— Crossover

— Mutation

= Convergence

The initial population consists of possible solutions to the problem, and a fit-
ness function that measures the relative “fitness” of a given solution. Note that
the similarity coefficient is a good fitness function for the problem of finding
relevant documents to a given query. Some solutions are selected (preferably
the ones that are most fit) to survive, and go on to the next generation. The
solutions correspond to chromosomes, and each component of a solution is
referred to as a gene.

The next generation is formed by selecting the surviving chromosomes.
This is done based on the fitness function. A value F is computed as the sum
of the individual fitness functions:

population

F= Y fitness(V;)

i=1

where population is the number of initial solutions. Consider a case where
the initial population has a fitness function as given in Table 2.27:
The aggregate sum‘of the fitness function, F, is 100, and the population size is
five. To form the next generation, five values are chosen randomly, with a bias
based on their corresponding portion of F'.

In Table 2.28, the proportions of the total for each entry in the population
are presented. To form a new generation of size five, five random values are
selected between zero and one. The selection interval used for each member



Retrieval Strategies 81

Table 2.27. Simple Fitness Function

fitness(i)
5
10
25
50
10

W AW —

of the population is based on its portion of the fitness function. If the random
number is 0.50 it falls within the (0.40, 0.90] interval, and member four is
selected. The magnitude of the fitness for a given member plays a substantial
role.n determining whether or not that member survives to the next generation.
In our case, member four’s fitness function is one half of the fitness function.
Thereisal — (%)5 = % chance of selecting this member into the next round.

Table 2.28. Selection Interval

i | fitness(i) ‘m}”ﬂ Selection Interval
1 5 0.05 [0,0.05)
2 10 0.10 [0.05,0.15)
3 25 0.25 [0.15,0.40)
4 50 0.50 [0.40,0.90)
5 10 0.10 [0.90,1.0]

Two types of changes can occur to the survivors—a crossover or a muta-
tion. A crossover occurs between two survivors and is obtained by swapping
components of the two survivors...Consider a case where the first survivor is
represented as 11111 and the second is 00000. A random point is then selected,
(e.g., three). After the crossover, the two new children are: 11100 and 00011.
This first child is derived from the first three one’s from the first parent and the
last two zero’s of the second parent. The second child is derived from the first
three zero’s of the second parent with the last two one’s of the first parent.

Subsequently, mutations occur by randomly examining each gene of each
survivor. The probability of mutation is a parameter to the genetic algorithm.
In implementations of genetic algorithms for information retrieval, the genes
are represented as bits and a mutation results in a single bit changing its value.
In our example, a random mutation in the second bit of the second child results
in the second child changing its value from zero to one giving 01011.
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The process continues until the fitness function for a new generation or se-
quence of generations is no better than it was for a preceding generation. This
is referred to as convergence. Some algorithms do not attain convergence and
are stopped after a predetermined number of generations.

2.8.1 Forming Document Representations

An initial foray into the use of genetic algorithms for information retrieval
is given in [Gordon, 1988]. The premise being that a key problem in infor-
mation retrieval is finding a good representation for a document. Hence, the
initial population consists of multiple representations for each document in the
collection. Each representation is a vector that maps to a term or phrase that is
most likely selected by some users. A fixed set of queries is then identified, and
a genetic algorithm is used to form the best representation for each document.

The query representation stays fixed, but the document representation is
evaluated and modified using the genetic algorithm. The Jaccard similarity
coefficient is used to measure the fitness of a given representation. The total
fitness for a given representation is computed as the average of the similarity
coefficient for each of the training queries against a given document representa-
tion. Document representations then “evolve” as described above by crossover
transformations and mutations. Overall, the average similarity coefficient of
all queries and all document representations should increase. Gordon showed
an increase of nearly ten percent after forty generations.

First, a set of queries for which it was known that the documents were rel-
evant were processed. The algorithm was then modified to include processing
of queries that were non-relevant. Each generation of the algorithm did two
sets of computaticns. One was done for the relevant queries and another for
the non-relevant queries, against each representation. Survivors were then se-
lected based on those that maximized the increase of the average Jaccard score
to the relevant queries and maximized a decrease of the average Jaccard score
for the non-relevant queries. After forty generations, the average increase was
nearly twenty percent and the average decrease was twenty-four percent. Scal-
ability of the approach can not be determined since the queries and the docu-
ments came from an eighteen document collection with each document having
eighteen different description collections. These results must be viewed as
somewhat inconclusive.

It should be noted, however, that although we referred to this as a document
indexing algorithm, it is directly applicable to document retrieval. Different
automatically generated representations, such as only terms, only phrases, dif-
ferent stemming algorithms, etc., could be used. After some training and evo-
lution, a pattern could emerge that indicates the best means of representing
documents. Additionally, we note that this strategy might be more applicable
for document routing applications than for ad hoc query processing.
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2.8.2 Automatic Generation of Query Weights

A genetic algorithm that derives query weights is given in [Yang and Ko-
rfhage, 1994]. It was tested on the small Cranfield collection. Tests using
the DOE portion of the TIPSTER collection (and associated modifications that
were necessary to scale to a larger collection) are given in [Yang and Korfhage,
1993]. Essentially, the original query is taken without any weights. The initial
population is simply composed of randomly generating ten sets of weights for
the terms in the original query. In effect, ten queries then exist in the popula-
tion.

The genetic algorithm subsequently implements each of the queries and
identifies a fitness function. First, the distance from the query to each doc-
ument is computed, and the top = documents are retrieved for the query (z
is determined based on a distance threshold used to determine when to stop
retrieving documents, with an upper limit of forty documents). The fitness
function is based on a relevance assessment of the top  documents retrieved:

fitness(i) = 10R, — R, — N,

where:
R, = number of relevant retrieved
R, = number of non-relevant retrieved
N, = number of relevant not retrieved

Basically, a good fitness value is given for finding relevant documents. Since
it is difficult to retrieve any relevant documents for larger collections, a constant
of ten is used to give extra weight to the identification of relevant documents.
Selection is based on choosing only those individuals whose fitness is higher
than the average. Subsequently, reproduction takes place using the weighted
application of the fitness value such that individuals with a high fitness value
are most likely to reproduce. Mutations are then applied with some randomly
changed weights. Crossover changes occur in which portions of one query
vector are swapped with another. The process continues until all relevant doc-
uments are identified. The premise is that the original queries will find some
relevant documents and, based on user feedback, other relevant documents will
be found.

Tests on the Cranfield collection showed improved average precision, af-
ter feedback, to be twenty percent higher than previous relevance feedback
approaches. In the follow-up paper using the DOE collection, the authors in-
dicate that the genetic algorithm continues to find new relevant documents in
each pass. This is interesting because the only thing that changes in the query
are the query weights. No new terms are added or removed from the query.
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Yang and Korfhage did use a relatively large collection (the DOE portion of
the TIPSTER document collection) but only tested two queries.

2.8.3  Automatic Generation of Weighted Boolean Queries

Genetic algorithms to build queries are given in [Kraft et al., 1994, Petry
et al.,, 1993]. The idea is that the perfect query for a given request can be
evolved from a set of single query terms. Given a set of documents known
to be relevant to the query, all of the terms in those documents can be used
as the initial population for a genetic algorithm. Each term is then a query,
and its fitness can be measured with a similarity coefficient (Kraft et al., used
the Jaccard coefficient). Mutations of the query terms resulted in weighted
Boolean combinations of the query terms. Three different fitness functions
were proposed. The first is simple recall:

r
E, = 7
where 7 is the number of relevant retrieved and R is the number of known
relevant.
The second combines recall and precision as:

Ey = a(recall) + p(precision)

where « and [ are arbitrary weights.

The results showed ‘that either of E; or E, fitness functions were able to
generate queries that found all of the relevant documents (after fifty genera-
tions). Since E» incorporated precision, the number of non-relevant documents
found decreased from an average of thirty-three (three different runs were im-
plemented for each test) to an average of nine.

This work showed that genetic algorithms could be implemented to generate
weighted Boolean queries. Unfortunately, it was only done for two queries on
a small document collection (CACM collection with 483 documents), so it is
not clear if this algorithm scales to a larger document collection.

2.9  Fuzzy Set Retrieval

Fuzzy sets were first described in [Zadeh, 1965]. Instead of assuming that
an element is a member in a set. a membership function is applied to identify
the degree of membership in a set. For information retrieval, fuzzy sets are
useful because they can describe what a document is “about.”

A set of elements where each element describes what the document is about
is inherently fuzzy. A document can be about “medicine” with some oblique
references to lawsuits, so maybe it is slightly about “medical malpractice.”
Placing “medical malpractice” as an element of the set is not really accurate,
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but eliminating it is also inaccurate. A fuzzy setis a membership in which the
strength of membership of each element is inherently more accurate. In our
example, the set of concepts that describe the document appears as:

C = {(medicine, 1.0), (malpractice, 0.5)}

The set C is a fuzzy set since it has degrees of membership associated with
each member. More formally, a fuzzy set including the concepts in C =
{c1, c2,...,cn} is represented as:

A=(c1, fa@e)) (€2 fa@))s---r (eny fa(en)

where f4 : C — [0,1] is a membership function that indicates the degree of
membership of an element in the set.
For finite sets, the fuzzy set A is expressed as:

Ao {fA(cn’fA(cz)’._.’fA(cn)}

C1 c2 Cn

Basic operations of intersection and union on fuzzy sets are given below. Es-
sentially, the intersection uses the minimum of the two membership functions
for the same element, and union uses the maximum of the two membership
functions for the same element.

The following definitions are used to obtain intersection, union, and com-
plement.

fAﬂB(Ci) = Min(fa(e,) fB(c)) Ve € C.
fAUB(Ci) = Maz(fa(e;) fB(er)) Ve € C-

far(c)) =1— fae) Ve € C.

2.9.1 Boolean Retrieval

Fuzzy set extensions to Boolean retrieval were developed in the late 1970’s
and are summarized in [Salton, 1989]. A Boolean similarity coefficient can be
computed by treating the terms in a document as fuzzy because their member-
ship is based on how often they occur in the document.

Consider a set D that consists of all documents in the collection. A fuzzy
set D, can be computed as the set D that describes all documents that contain
the term ¢. This set appears as: Dy = {(d1,0.8), (d2,0.5)}. This indicates that
d, contains element ¢ with a strength of 0.8 and d, contains ¢ with a strength
of 0.5.
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Similarly, a set D, can be defined as the set of all documents that contain
term s. This set might appear as: D, = {(d},0.5), (ds, 0.4)}

Computing (s \/t) requires Dy D, and (sAt) Ds\D;. These can be
computed using the maximum value for union and the minimum for intersec-
tion. Hence:

(s\/) = Ds|J Dy = {(d1,0.8), (d2, 0.5)}
(s At) = Ds(\ D¢ = {(d1.0.5), (d2,0.4)}

More complex Boolean expressions are constructed by applying the results of
these operations to new expressions. Ultimately, a single set that contains the
documents and their similarity coefficient is obtained.

One problem with this approach is that the model does not allow for the
weight of query terms. This can be incorporated into the model by multiplying
the query term weight by the existing membership strength for each element
in the set. Another problem is that terms with very low weight dominate the
similarity coefficient. Terms that have a very low membership function are
ultimately the only factor in the similarity coefficient. Consider a case where
document one contains term s with a membership value of 0.0001 and term
t with a membership value of 0.5. In a query asking for s A ¢, the score for
document one will be 0.0001. Should the query have many more terms, this
one term dominates the weight of the entire similarity coefficient. A remedy
for this is to define a threshold z in which the membership function becomes
zero if it falls below z.

29.1.1  Fuzzy Set Example

We now apply fuzzy set Boolean retrieval to our example. Our query “gold
silver truck” is inadequate as it is designed for a relevance ranking, so we
change it to the Boolean request: “gold OR silver OR truck.” We take each doc-
ument as a fuzzy set. To get a strength of membership for each term, we take
the ratio of the term frequency within the document to the document length.
Hence, our collection of documents becomes a collection of fuzzy sets:

D ={(a, 0.143), (damaged, 0.143), (fire, 0.143), (gold, 0.143),
(in, 0.143), (of, 0.143), (shipment, 0.143)}

Dy = {(a, 0.125), (arrived, 0. 125), (delivery, 0.125), (in, 0.125),
(of, 0.125), (silver, 0.25), (truck, 0.125)}

Dy = {(a, 0.143), (arrived, 0.143), (gold, 0.143), (in, 0.143),
(of, 0.143), (shipment, 0.143), (truck, 0. 143)}



